Advertisement

The Role of Gene–Environment Interaction in the Etiology of SLE

  • Chikako Kiyohara
  • Masakazu Washio
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

Cigarette smoking may be associated with an increased risk of systemic lupus erythematosus (SLE). SLE results from a complex interaction between environmental and genetic risk factors. To evaluate modifying effect of the genetic polymorphisms involved in the metabolism of tobacco smoke on the association of cigarette smoking with SLE risk could be important for understanding of the pathogenesis of SLE. We investigated the relationship of four genetic polymorphisms (cytochrome P450 (CYP) 1A1 rs4646903, glutathione S-transferase (GST) M1 deletion and N-acetyltransferase 2 (NAT2)) to SLE risk with attention to interaction with cigarette smoking. CYP1A1 rs4646903 and NAT2 polymorphisms were significantly associated with SLE risk. The multiplicative interaction between any one of the three genetic polymorphisms and smoking were far from significant. There were significant additive interactions between smoking and either rs4646903 or NAT2. Specifically, the attributable proportion due to the interaction was estimated to be approximately 0.50. Future studies involving larger control and case populations, precisely and uniformly defined clinical classification of SLE and better smoking exposure histories will undoubtedly lead to a more thorough understanding of the role of various genes in SLE development.

Keywords

Genetic polymorphism Interaction SLE Smoking 

References

  1. 1.
    Montanaro A, Bardana EJ Jr. Dietary amino acid-induced systemic lupus erythematosus. Rheum Dis Clin N Am. 1991;17(2):323–32.Google Scholar
  2. 2.
    Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Parks CG, Gilkeson GS. Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus. Arthritis Rheum. 1998;41(10):1714–24.  https://doi.org/10.1002/1529-0131(199810)41:10<1714::AID-ART3>3.0.CO;2-U.CrossRefPubMedGoogle Scholar
  3. 3.
    Costenbader KH, Kim DJ, Peerzada J, Lockman S, Nobles-Knight D, Petri M, et al. Cigarette smoking and the risk of systemic lupus erythematosus: a meta-analysis. Arthritis Rheum. 2004;50(3):849–57.  https://doi.org/10.1002/art.20049.CrossRefPubMedGoogle Scholar
  4. 4.
    Parks CG, Cooper GS. Occupational exposures and risk of systemic lupus erythematosus: a review of the evidence and exposure assessment methods in population- and clinic-based studies. Lupus. 2006;15(11):728–36.CrossRefPubMedGoogle Scholar
  5. 5.
    Kamen DL. Environmental influences on systemic lupus erythematosus expression. Rheum Dis Clin N Am. 2014;40(3):401–12, vii.  https://doi.org/10.1016/j.rdc.2014.05.003.CrossRefGoogle Scholar
  6. 6.
    Washio M, Horiuchi T, Kiyohara C, Kodama H, Tada Y, Asami T, et al. Smoking, drinking, sleeping habits, and other lifestyle factors and the risk of systemic lupus erythematosus in Japanese females: findings from the KYSS study. Mod Rheumatol. 2006;16(3):143–50.  https://doi.org/10.1007/s10165-006-0474-6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kiyohara C, Washio M, Horiuchi T, Asami T, Ide S, Atsumi T, et al. Smoking, alcohol consumption, and risk of systemic lupus erythematosus: a case-control study in a Japanese population. J Rheumatol. 2012;39(7):1363–70.  https://doi.org/10.3899/jrheum.111609.CrossRefPubMedGoogle Scholar
  8. 8.
    Kiyohara C, Washio M, Horiuchi T, Asami T, Ide S, Atsumi T, et al. Risk modification by CYP1A1 and GSTM1 polymorphisms in the association of cigarette smoking and systemic lupus erythematosus in a Japanese population. Scand J Rheumatol. 2012;41(2):103–9.  https://doi.org/10.3109/03009742.2011.608194.CrossRefPubMedGoogle Scholar
  9. 9.
    Hardy CJ, Palmer BP, Muir KR, Sutton AJ, Powell RJ. Smoking history, alcohol consumption, and systemic lupus erythematosus: a case-control study. Ann Rheum Dis. 1998;57(8):451–5.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ghaussy NO, Sibbitt WL Jr, Qualls CR. Cigarette smoking, alcohol consumption, and the risk of systemic lupus erythematosus: a case-control study. J Rheumatol. 2001;28(11):2449–53.PubMedGoogle Scholar
  11. 11.
    Formica MK, Palmer JR, Rosenberg L, McAlindon TE. Smoking, alcohol consumption, and risk of systemic lupus erythematosus in the black women’s health study. J Rheumatol. 2003;30(6):1222–6, [pii]: 0315162X-30-1222PubMedGoogle Scholar
  12. 12.
    Ekblom-Kullberg S, Kautiainen H, Alha P, Leirisalo-Repo M, Julkunen H. Smoking and the risk of systemic lupus erythematosus. Clin Rheumatol. 2003;32(8):1219–22.  https://doi.org/10.1007/s10067-013-2224-4.CrossRefGoogle Scholar
  13. 13.
    Nagata C, Fujita S, Iwata H, Kurosawa Y, Kobayashi K, Kobayashi M, et al. Systemic lupus erythematosus: a case-control epidemiologic study in Japan. Int J Dermatol. 1995;34(5):333–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Jiang F, Li S, Jia C. Smoking and the risk of systemic lupus erythematosus: an updated systematic review and cumulative meta-analysis. Clin Rheumatol. 2015;34(11):1885–92.  https://doi.org/10.1007/s10067-015-3008-9.CrossRefPubMedGoogle Scholar
  15. 15.
    Sopori ML, Kozak W. Immunomodulatory effects of cigarette smoke. J Neuroimmunol. 1998;83(1–2):148–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Hersey P, Prendergast D, Edwards A. Effects of cigarette smoking on the immune system. Follow-up studies in normal subjects after cessation of smoking. Med J Aust. 1983;2(9):425–9.PubMedGoogle Scholar
  17. 17.
    Griffiths HR. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev. 2008;7(7):544–9.  https://doi.org/10.1016/j.autrev.2008.04.013.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang J, Pan HF, Ye DQ, Su H, Li XP. Moderate alcohol drinking might be protective for systemic lupus erythematosus: a systematic review and meta-analysis. Clin Rheumatol. 2008;27(12):1557–63.  https://doi.org/10.1007/s10067-008-1004-z.CrossRefPubMedGoogle Scholar
  19. 19.
    Imhof A, Froehlich M, Brenner H, Boeing H, Pepys MB, Koenig W. Effect of alcohol consumption on systemic markers of inflammation. Lancet. 2001;357(9258):763–7.  https://doi.org/10.1016/S0140-6736(00)04170-2, [pii]: S0140-6736(00)04170-2CrossRefPubMedGoogle Scholar
  20. 20.
    Ripley BJ, Goncalves B, Isenberg DA, Latchman DS, Rahman A. Raised levels of interleukin 6 in systemic lupus erythematosus correlate with anaemia. Ann Rheum Dis. 2005;64(6):849–53.  https://doi.org/10.1136/ard.2004.022681, [pii]: 64/6/849CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    McCarty MF. Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation, smoking, diabetes, and visceral obesity: down-regulation with essential fatty acids, ethanol and pentoxifylline. Med Hypotheses. 1999;52(5):465–77.  https://doi.org/10.1054/mehy.1997.0684, [pii]: S0306-9877(97)90684-8CrossRefPubMedGoogle Scholar
  22. 22.
    Wirleitner B, Schroecksnadel K, Winkler C, Schennach H, Fuchs D. Resveratrol suppresses interferon-gamma-induced biochemical pathways in human peripheral blood mononuclear cells in vitro. Immunol Lett. 2005;100(2):159–63.  https://doi.org/10.1016/j.imlet.2005.03.008, [pii]: S0165-2478(05)00069-6CrossRefPubMedGoogle Scholar
  23. 23.
    Cho KH, Kim HJ, Rodriguez-Iturbe B, Vaziri ND. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am J Physiol Renal Physiol. 2009;297(1):F106–13.  https://doi.org/10.1152/ajprenal.00126.2009, [pii]: 00126.2009CrossRefPubMedGoogle Scholar
  24. 24.
    Jarvinen P, Aho K. Twin studies in rheumatic diseases. Semin Arthritis Rheum. 1994;24(1):19–28, [pii]: 0049-0172(94)90096-5CrossRefPubMedGoogle Scholar
  25. 25.
    Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 1992;35(3):311–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Tsao BP. Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol. 2004;16(5):513–21, [pii]: 00002281-200409000-00005CrossRefPubMedGoogle Scholar
  27. 27.
    David SP. Systemic lupus erythematosus B. Epidemiology, pathology, and pathogenesis. In: Klippel JH, Stone JH, Crofford LJ, White PH, editors. Primer on the rheumatic diseases. 13th ed. New York: Springer-Verlag; 2008. p. 319–26.Google Scholar
  28. 28.
    Sugiyama D, Nishimura K, Tamaki K, Tsuji G, Nakazawa T, Morinobu A, et al. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2010;69(1):70–81.  https://doi.org/10.1136/ard.2008.096487.CrossRefPubMedGoogle Scholar
  29. 29.
    Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6(12):947–60.  https://doi.org/10.1038/nrc2015, [pii]: nrc2015CrossRefGoogle Scholar
  30. 30.
    Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88.  https://doi.org/10.1146/annurev.pharmtox.45.120403.095857.CrossRefGoogle Scholar
  31. 31.
    Unal M, Tamer L, Dogruer ZN, Yildirim H, Vayisoglu Y, Camdeviren H. N-acetyltransferase 2 gene polymorphism and presbycusis. Laryngoscope. 2005;115(12):2238–41.  https://doi.org/10.1097/01.mlg.0000183694.10583.12.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim WJ, Lee HL, Lee SC, Kim YT, Kim H. Polymorphisms of N-acetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. J Urol. 2000;164(1):209–13.CrossRefPubMedGoogle Scholar
  33. 33.
    Masson LF, Sharp L, Cotton SC, Little J. Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: a HuGE review. Am J Epidemiol. 2005;161(10):901–15.  https://doi.org/10.1093/aje/kwi121.CrossRefPubMedGoogle Scholar
  34. 34.
    Castelao JE, Yuan JM, Skipper PL, Tannenbaum SR, Gago-Dominguez M, Crowder JS, et al. Gender- and smoking-related bladder cancer risk. J Natl Cancer Inst. 2001;93(7):538–45.CrossRefPubMedGoogle Scholar
  35. 35.
    Parl FF. Glutathione S-transferase genotypes and cancer risk. Cancer Lett. 2005;221(2):123–9.  https://doi.org/10.1016/j.canlet.2004.06.016.CrossRefPubMedGoogle Scholar
  36. 36.
    Agundez JA. Polymorphisms of human N-acetyltransferases and cancer risk. Curr Drug Metab. 2008;9(6):520–31.CrossRefPubMedGoogle Scholar
  37. 37.
    Kiyohara C, Washio M, Horiuchi T, Tada Y, Asami T, Ide S, et al. Cigarette smoking, N-acetyltransferase 2 polymorphisms and systemic lupus erythematosus in a Japanese population. Lupus. 2009;18(7):630–8.  https://doi.org/10.1177/0961203309102809.CrossRefPubMedGoogle Scholar
  38. 38.
    Kiyohara C, Washio M, Horiuchi T, Asami T, Ide S, Atsumi T, et al. The modifying effect of NAT2 genotype on the association between systemic lupus erythematosus and consumption of alcohol and caffeine-rich beverages. Arthritis Care Res. 2014;66:1048.  https://doi.org/10.1002/acr.22282.CrossRefGoogle Scholar
  39. 39.
    Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25(11):1271–7.CrossRefGoogle Scholar
  40. 40.
    Kiyohara C, Washio M, Horiuchi T, Takahashi H, Tada Y, Kobashi G, et al. Dietary patterns and the risk of systemic lupus erythematosus in a Japanese population: the Kyushu Sapporo SLE (KYSS) study. Int Med J. 2015;22(3):110–5.Google Scholar
  41. 41.
    Marshall SW. Power for tests of interaction: effect of raising the type I error rate. Epidemiol Perspect Innov. 2007;4:4.  https://doi.org/10.1186/1742-5573-4-4.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rothman KJ. Measuring interaction. Epidemiology: an introduction. New York: Oxford University Press; 2002. p. 168–80.Google Scholar
  43. 43.
    Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlbom A. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20(7):575–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Kiyohara C, Hirohata T, Inutsuka S. The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene. Jpn J Cancer Res. 1996;87(1):18–24, [pii]:0910505096845650CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Horiuchi T, Washio M, Kiyohara C, Tsukamoto H, Tada Y, Asami T, et al. Combination of TNF-RII, CYP1A1 and GSTM1 polymorphisms and the risk of Japanese SLE: findings from the KYSS study. Rheumatology (Oxford). 2009;48(9):1045–9.  https://doi.org/10.1093/rheumatology/kep166.CrossRefGoogle Scholar
  46. 46.
    von Schmiedeberg S, Fritsche E, Ronnau AC, Specker C, Golka K, Richter-Hintz D, et al. Polymorphisms of the xenobiotic-metabolizing enzymes CYP1A1 and NAT-2 in systemic sclerosis and lupus erythematosus. Adv Exp Med Biol. 1999;455:147–52.CrossRefGoogle Scholar
  47. 47.
    Yen JH, Chen CJ, Tsai WC, Lin CH, Ou TT, Hu CJ, et al. Manganese superoxide dismutase and cytochrome P450 1A1 genes polymorphisms in rheumatoid arthritis in Taiwan. Hum Immunol. 2003;64(3):366–73. https://doi.org/S0198885902008182, [pii]
  48. 48.
    Zhang J, Deng J, Zhang C, Lu Y, Liu L, Wu Q, et al. Association of GSTT1, GSTM1 and CYP1A1 polymorphisms with susceptibility to systemic lupus erythematosus in the Chinese population. Clin Chim Acta. 2010;411(11-12):878–81.  https://doi.org/10.1016/j.cca.2010.03.007, [pii]: S0009-8981(10)00176-2CrossRefPubMedGoogle Scholar
  49. 49.
    Rupasree Y, Naushad SM, Rajasekhar L, Kutala VK. Association of genetic variants of xenobiotic metabolic pathway with systemic lupus erythematosus. Indian J Biochem Biophys. 2013;50(5):447–52.PubMedGoogle Scholar
  50. 50.
    Landi MT, Bertazzi PA, Shields PG, Clark G, Lucier GW, Garte SJ, et al. Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans. Pharmacogenetics. 1994;4(5):242–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. 2000;61(3):154–66, [pii]: pha61154CrossRefPubMedGoogle Scholar
  52. 52.
    Landi S. Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res. 2000;463(3):247–83, [pii]: S1383574200000508CrossRefPubMedGoogle Scholar
  53. 53.
    Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1234–7.  https://doi.org/10.1038/ng.472, [pii]: ng.472CrossRefPubMedGoogle Scholar
  54. 54.
    Ollier W, Davies E, Snowden N, Alldersea J, Fryer A, Jones P, et al. Association of homozygosity for glutathione-S-transferase GSTM1 null alleles with the Ro+/La- autoantibody profile in patients with systemic lupus erythematosus. Arthritis Rheum. 1996;39(10):1763–4.CrossRefPubMedGoogle Scholar
  55. 55.
    Tew MB, Ahn CW, Friedman AW, Reveille JD, Tan FK, Alarcon GS, et al. Systemic lupus erythematosus in three ethnic groups. VIII. Lack of association of glutathione S-transferase null alleles with disease manifestations. Arthritis Rheum. 2001;44(4):981–3.  https://doi.org/10.1002/1529-0131(200104)44:4<981::AID-ANR158>3.0.CO;2-0.CrossRefPubMedGoogle Scholar
  56. 56.
    Fraser PA, Ding WZ, Mohseni M, Treadwell EL, Dooley MA, St Clair EW, et al. Glutathione S-transferase M null homozygosity and risk of systemic lupus erythematosus associated with sun exposure: a possible gene-environment interaction for autoimmunity. J Rheumatol. 2003;30(2):276–82, [pii]: 0315162X-30-276PubMedGoogle Scholar
  57. 57.
    Kang TY, El-Sohemy A, Comelis MC, Eny KM, Bae SC. Glutathione S-transferase genotype and risk of systemic lupus erythematosus in Koreans. Lupus. 2005;14(5):381–4.CrossRefPubMedGoogle Scholar
  58. 58.
    Perry HM Jr, Tan EM, Carmody S, Sakamoto A. Relationship of acetyl transferase activity to antinuclear antibodies and toxic symptoms in hypertensive patients treated with hydralazine. J Lab Clin Med. 1970;76(1):114–25.PubMedGoogle Scholar
  59. 59.
    Woosley RL, Drayer DE, Reidenberg MM, Nies AS, Carr K, Oates JA. Effect of acetylator phenotype on the rate at which procainamide induces antinuclear antibodies and the lupus syndrome. N Engl J Med. 1978;298(21):1157–9.  https://doi.org/10.1056/nejm197805252982101.CrossRefPubMedGoogle Scholar
  60. 60.
    Hein DW. Acetylator genotype and arylamine-induced carcinogenesis. Biochim Biophys Acta. 1988;948(1):37–66.PubMedGoogle Scholar
  61. 61.
    Jana S, Mandlekar S. Role of phase II drug metabolizing enzymes in cancer chemoprevention. Curr Drug Metab. 2009;10(6):595–616.CrossRefPubMedGoogle Scholar
  62. 62.
    Evans D. N-acetyltransferases. In: Kalow W, editor. Pharmacogenetics of drug metabolism. New York: Pergamon Press; 1992. p. 95–197.Google Scholar
  63. 63.
    Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomark Prev. 2000;9(1):29–42.Google Scholar
  64. 64.
    Foad B, Litwin A, Zimmer H, Hess EV. Acetylator phenotype in systemic lupus erythematosus. Arthritis Rheum. 1977;20(3):815–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Larsson R, Karlsson E, Molin L. Spontaneous systemic lupus erythematosus and acelylator phenotype. Acta Med Scand. 1977;201(3):223–6.PubMedGoogle Scholar
  66. 66.
    Fishbein E, Alarcon-Segovia D. Slow acetylation phenotype in systemic lupus erythematosus. Arthritis Rheum. 1979;22(1):95–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Johansson E, Mustakallio KK, Mattila MJ. Polymorphic acetylator phenotype and systemic lupus erythematosus. Acta Med Scand. 1981;210(3):193–6.PubMedGoogle Scholar
  68. 68.
    Reidenberg MM, Martin JH. The acetylator phenotype of patients with systemic lupus erythematosus. Drug Metab Dispos. 1974;2(1):71–3.PubMedGoogle Scholar
  69. 69.
    Sardas S, Karakaya AE, Sardas OS. Acetylator phenotype in patients with systemic lupus erythematosus. Arthritis Rheum. 1986;29(11):1412–3.CrossRefPubMedGoogle Scholar
  70. 70.
    Kumana CR, Chan MM, Wong KL, Wong RW, Kou M, Lauder IJ. Lack of association between slow acetylator status and spontaneous lupus erythematosus. Clin Pharmacol Ther. 1990;48(2):208–13.CrossRefPubMedGoogle Scholar
  71. 71.
    Ong ML, Mant TG, Veerapen K, Fitzgerald D, Wang F, Manivasagar M, et al. The lack of relationship between acetylator phenotype and idiopathic systemic lupus erythematosus in a South-east Asian population: a study of Indians, Malays and Malaysian Chinese. Br J Rheumatol. 1990;29(6):462–4.CrossRefPubMedGoogle Scholar
  72. 72.
    Shiokawa S, Yasuda M, Nobunaga M. Genotypes of polymorphic arylamine N-acetyltransferase in systemic lupus erythematosus. Arthritis Rheum. 1992;35(11):1397–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Reidenberg MM, Drayer DE, Lorenzo B, Strom BL, West SL, Snyder ES, et al. Acetylation phenotypes and environmental chemical exposure of people with idiopathic systemic lupus erythematosus. Arthritis Rheum. 1993;36(7):971–3.CrossRefPubMedGoogle Scholar
  74. 74.
    Zschieschang P, Hiepe F, Gromnica-Ihle E, Roots I, Cascorbi I. Lack of association between arylamine N-acetyltransferase 2 (NAT2) polymorphism and systemic lupus erythematosus. Pharmacogenetics. 2002;12(7):559–63.CrossRefPubMedGoogle Scholar
  75. 75.
    Cooper GS, Treadwell EL, Dooley MA, St Clair EW, Gilkeson GS, Taylor JA. N-acetyl transferase genotypes in relation to risk of developing systemic lupus erythematosus. J Rheumatol. 2004;31(1):76–80.PubMedGoogle Scholar
  76. 76.
    Rychlik-Sych M, Skretkowicz J, Gawronska-Szklarz B, Gornik W, Sysa-Jedrzejowska A, Skretkowicz-Szarmach K. Acetylation genotype and phenotype in patients with systemic lupus erythematosus. Pharmacol Rep. 2006;58(1):22–9.PubMedGoogle Scholar
  77. 77.
    Hunter DJ. Gene-environment interactions in human diseases. Nat Rev Genet. 2005;6(4):287–98.  https://doi.org/10.1038/nrg1578, [pii]: nrg1578CrossRefPubMedGoogle Scholar
  78. 78.
    Patrick DL, Cheadle A, Thompson DC, Diehr P, Koepsell T, Kinne S. The validity of self-reported smoking: a review and meta-analysis. Am J Public Health. 1994;84(7):1086–93.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Wells AJ, English PB, Posner SF, Wagenknecht LE, Perez-Stable EJ. Misclassification rates for current smokers misclassified as nonsmokers. Am J Public Health. 1998;88(10):1503–9.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mannisto S, Virtanen M, Mikkonen T, Pietinen P. Reproducibility and validity of a food frequency questionnaire in a case-control study on breast cancer. J Clin Epidemiol. 1996;49(4):401–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Ferraroni M, Tavani A, Decarli A, Franceschi S, Parpinel M, Negri E, et al. Reproducibility and validity of coffee and tea consumption in Italy. Eur J Clin Nutr. 2004;58(4):674–80.  https://doi.org/10.1038/sj.ejcn.1601864.CrossRefPubMedGoogle Scholar
  82. 82.
    Giovannucci E, Stampfer MJ, Colditz GA, Manson JE, Rosner BA, Longnecker MP, et al. Recall and selection bias in reporting past alcohol consumption among breast cancer cases. Cancer Causes Control. 1993;4(5):441–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Geneletti S, Richardson S, Best N. Adjusting for selection bias in retrospective, case-control studies. Biostatistics. 2009;10(1):17–31.  https://doi.org/10.1093/biostatistics/kxn010.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Preventive MedicineGraduate School of Medical Sciences, Kyushu UniversityFukuoka CityJapan
  2. 2.Department of Community Health and Clinical EpidemiologySt. Mary’s CollegeKurume CityJapan

Personalised recommendations