Advertisement

Slowly Digestible Starch

  • Junrong HuangEmail author
  • Qi Yang
  • Huayin Pu
Chapter

Abstract

Slowly digestible starch (SDS) is digested within 20–120 min in the human body, resulting in the slow and prolonged release of glucose into the bloodstream, coupled to a low glycemic response. The potential benefits of SDS are linked to stable glucose metabolism, diabetes management, mental performance, and satiety. SDS can be widely used in solid or liquid processed food products, nutritional supplements, and drug preparations. Future research should focus on the stabilization and protection of flavors, lipids, bioactive agents, and drugs from oxidation and enzyme hydrolysis. In this chapter, the preparation, structures, physicochemical properties, functions, and potential applications of SDS were reviewed.

Keywords

Slowly digestible starch Glycemic index Modification Preparation Digestibility Controlled energy release 

References

  1. 1.
    Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr. 1992;46(Suppl 2):S33.Google Scholar
  2. 2.
    Englyst KN, Englyst H. Classification and measurement of nutritionally important starch fractions N. Carbohydrate bioavailability: review. Br J Nutr. 2005;94(1):1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Miao M, Jiang B, Cui SW, Zhang T, Jin Z. Slowly digestible starch-a review. Crit Rev Food Sci Nutr. 2015;55(12):1642–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Goñi I, Garcia-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index. Nutr Res. 1997;17(3):427–37.CrossRefGoogle Scholar
  5. 5.
    Jenkins DJ, Thorne MJ, Wolever TM, Jenkins AL, Rao AV, Thompson LU. The effect of starch-protein interaction in wheat on the glycemic response and rate of in vitro digestion. Am J Clin Nutr. 1987;45(5):946–51.CrossRefGoogle Scholar
  6. 6.
    Hoover R, Zhou Y. In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes-a review. Carbohydr Polym. 2003;54(4):401–17.CrossRefGoogle Scholar
  7. 7.
    Zobel HF. Starch crystal transformations and their industrial importance. Starch-Stärke. 1988;40(1):1–7.CrossRefGoogle Scholar
  8. 8.
    Ness A. Diet, nutrition and the prevention of chronic diseases. WHO technical report series 916. Report of a joint WHO/FSA expert consultation. Int J Epidemiol. 2004;33(4):914–5.CrossRefGoogle Scholar
  9. 9.
    Björck I, Östman HLE. Low glycaemic-index foods. Br J Nutr. 2000;83(Suppl 1):S149.PubMedGoogle Scholar
  10. 10.
    Ells LJ, Seal CB, Bal W, Mathers JC. Postprandial glycaemic, lipaemic and haemostatic responses to ingestion of rapidly and slowly digested starches in healthy young women. Br J Nutr. 2005;94(6):948–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee J. Surprising new uses for rice. Agric Res. 1997;45(1):22.Google Scholar
  12. 12.
    Bemiller JN, Huber KC. Physical modification of food starch functionalities. Rev Food Sci Technol. 2015;6(1):19–69.CrossRefGoogle Scholar
  13. 13.
    Lee CJ, Kim Y, Choi SJ, Moon TW. Slowly digestible starch from heat-moisture treated waxy potato starch: preparation, structural characteristics, and glucose response in mice. Food Chem. 2012;133(4):1222–9.CrossRefGoogle Scholar
  14. 14.
    Chung HJ, Liu Q, Hoover R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Food Res Int. 2010;43(2):501–8.CrossRefGoogle Scholar
  15. 15.
    Chang JL, Sang IS, Yang K, Choi SJ, Moon TW. Structural characteristics and glucose response in mice of potato starch modified by hydrothermal treatments. Carbohydr Polym. 2011;83(4):1879–86.CrossRefGoogle Scholar
  16. 16.
    Zhang EJ, Xiao-Wei HE. Study on preparation of slowly digestible starch by heat-moisture treatment and its properties. Sci Technol Food Ind. 2010;31(5):121–3. (In Chinese)Google Scholar
  17. 17.
    Chung HJ, Cho DW, Park JD, Kweon DK, Lim ST. In vitro, starch digestibility and pasting properties of germinated brown rice after hydrothermal treatments. J Cereal Sci. 2012;56(2):451–6.CrossRefGoogle Scholar
  18. 18.
    Silva WM, Biduski B, Lima KO, Pinto VZ, Hoffmann JF, Vanier NL, Dias AR. Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment. Food Chem. 2017;219(15):260–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Niba LL. Processing effects on susceptibility of starch to digestion in some dietary starch sources. Int J Food Sci Nutr. 2009;54(1):97–109.CrossRefGoogle Scholar
  20. 20.
    Zhan J, Tian Y, Tong Q. Preparation and slowly digestible properties of β-cyclodextrins (β-CDs)-modified starches. Carbohydr Polym. 2013;91(2):609–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Lehmann U, Robin F. Slowly digestible starch-its structure and health implications: a review. Trends Food Sci Technol. 2007;18(7):346–55.CrossRefGoogle Scholar
  22. 22.
    Nebesny E, Rosicka J, Tkaczyk M. Influence of selected parameters of starch gelatinization and hydrolysis on stability of amylose-lipid complexes. Starch-Stärke. 2005;57(7):325–31.CrossRefGoogle Scholar
  23. 23.
    Tang MC, Copeland L. Analysis of complexes between lipids and wheat starch. Carbohydr Polym. 2007;67(1):80–5.CrossRefGoogle Scholar
  24. 24.
    Holm J, Björck I, Ostrowska S, Eliasson AC, Asp NG, Larsson K, Lundquist I. Digestibility of amylose-lipid complexes in-vitro and in-vivo. Starch-Stärke. 1983;35(9):294–7.CrossRefGoogle Scholar
  25. 25.
    Tian Y, Zhan J, Zhao J, Xie Z, Xu C, Jin Z. Preparation of products rich in slowly digestible starch (SDS) from rice starch by a dual-retrogradation treatment. Food Hydrocoll. 2013;31(1):1–4.CrossRefGoogle Scholar
  26. 26.
    Singh J, Kaur L, Mccarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review. Food Hydrocoll. 2007;21(9):1–22.CrossRefGoogle Scholar
  27. 27.
    Kim DI, Lee HA, Cheong JJ, Chuagn KM. Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. J Cereal Sci. 2007;45(1):24–33.CrossRefGoogle Scholar
  28. 28.
    He JH, Zhang GY. Preparation and digestibility of octenyl succinic anhydride starch. J Chines Cereals Oils Assoc. 2007;22(4):71–4. (In Chinese)Google Scholar
  29. 29.
    He J, Liu J, Zhang G. Slowly digestible waxy corn starch prepared by octenyl succinic anhydride esterification and heat-moisture treatment: glycemic response and mechanism. Biomacromolecules. 2008;9(1):175–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Jeon YS, Lowell AV, Gross RA. Studies of starch esterification: reactions with Alkenylsuccinates in aqueous slurry systems. Starch-Stärke. 1999;51(2–3):90–3.CrossRefGoogle Scholar
  31. 31.
    Park EY, Baik BK, Lim ST. Influences of temperature-cycled storage on retrogradation and in vitro, digestibility of waxy corn starch gel. J Cereal Sci. 2009;50(1):43–8.CrossRefGoogle Scholar
  32. 32.
    Zhang L, Hu X, Xu X, Jin Z, Tian Y. Slowly digestible starch prepared from rice starches by temperature-cycled retrogradation. Carbohydr Polym. 2011;84(3):970–4.CrossRefGoogle Scholar
  33. 33.
    Feng Z, Chen F, Kong F, Gao Q, Aadil RM, Yu S. Structure and digestibility of debranched and repeatedly crystallized waxy rice starch. Food Chem. 2015;187:348–53.CrossRefGoogle Scholar
  34. 34.
    Shin HJ, Choi SJ, Park CS, Moon TW. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohydr Polym. 2010;82(2):489–97.CrossRefGoogle Scholar
  35. 35.
    Xiong SS. The study on enzymatic preparation of slowly digestible starch. Wuxi: Jiangnan University; 2012. (In Chinese)Google Scholar
  36. 36.
    BeMiller JN, Whistler RL. Starch: chemistry and technology. Elsevier Inc; 2009:28Google Scholar
  37. 37.
    Christophersen C, Otzen DE, Norman BE, Christensen S, Schaefer T. Enzymatic characterisation of novamyl, a thermostable alpha-amylase. Starch-Stärke. 1998;50(1):39–45.CrossRefGoogle Scholar
  38. 38.
    Bijttebier A, Goesaert H, Delcour JA. Hydrolysis of amylopectin by amylolytic enzymes: structural analysis of the residual amylopectin population. Carbohydr Res. 2010;345(2):235–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Le QT, Lee CK, Kim YW, Lee SJ, Zhagn R, Withers S, Kim YR, Auh JH, Paek KH. Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohydr Polym. 2009;75(1):9–14.CrossRefGoogle Scholar
  40. 40.
    Borovsky D, Smith EE, Whelan WJ. On the mechanism of amylose branching by potato Q-enzyme. Eur J Biochem. 1976;62(2):307–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Takata H, Takaha T, Takagi M, Imanaka T. Cyclization reaction catalyzed by branching enzyme. J Bacteriol. 1996;178(6):1600–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hizukuri S. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res. 1986;147(2):342–7.CrossRefGoogle Scholar
  43. 43.
    Shin HJ, Choi SJ, Park CS, Moon TW. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohydr Polym. 2010;82(2):489–97.CrossRefGoogle Scholar
  44. 44.
    Miao M, Xiong S, Ye F. Development of maize starch with a slow digestion property using maltogenic -amylase. Carbohydr Polym. 2014;103(1):164–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang G, Ao Z, Hamaker BR. Nutritional property of endosperm starches from corn mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure. J Agric Food Chem. 2008;56(12):4686–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Miao M, Zhang T, Jiang B. Preparation of slowly digestible/resistant starch in debranched, retrograded waxy corn starch. J Biotechnol. 2008;136(4):740.CrossRefGoogle Scholar
  47. 47.
    Zhang B, Huang Q, Luo FX, FU X. Structural characterizations and digestibility of debranched high-amylose corn starch complexed with lauric acid. Food Hydrocoll. 2012;28(1):174–81.CrossRefGoogle Scholar
  48. 48.
    Sha CX, Tian YQ, Jin ZY. Preparation and identification of V1-type slowly digestible starch. Food Mach. 2013;29(3):37–40.Google Scholar
  49. 49.
    Wang Y. Study on the preparation and properties of cross-linked and esterification waxy rice starch. Sichuan: Sichuan Agriculture University; 2008. (In Chinese)Google Scholar
  50. 50.
    Zheng BL. Study on composite modified propreation of slowly digestible starch. Henan: Henan University of Technology; 2012. (In Chinese)Google Scholar
  51. 51.
    Arijaje EO, Wang Y. Effects of enzymatic modifications and botanical source on starch-stearic acid complex formation. Starch-Stärke. 2016;68(7–8):700–8.CrossRefGoogle Scholar
  52. 52.
    Jiang S, Dai L, Qin Y, XIong L, Sun Q. Preparation and characterization of octenyl succinic anhydride modified taro starch nanoparticles. PLoS One. 2016;11(2):e0150043.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Klaochanpong N, Puncha-Arnon S, Uttapap D, Puttanlek C, Rungsardthong V. Octenyl succinylation of granular and debranched waxy starches and their application in low-fat salad dressing. Food Hydrocoll. 2017;66:296–306.CrossRefGoogle Scholar
  54. 54.
    Bordenave N, Janaswamy S, Yao Y. Influence of glucan structure on the swelling and leaching properties of starch microparticles. Carbohydr Polym. 2014;103(1):234–43.PubMedCrossRefGoogle Scholar
  55. 55.
    Gong M, Li X, Xiong L, Sun Q. Retrogradation property of starch nanoparticles prepared by pullulanase and recrystallization. Starch-Starke. 2016;68(3–4):230–8.CrossRefGoogle Scholar
  56. 56.
    Li X, Qin Y, Liu C, Jiang S, Xiong L, Sun Q. Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: the effect of electrostatic repulsion or steric hindrance. Food Chem. 2016;199:356–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Qiu C, Yang J, Ge S, Chang R, Xiong L. Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch. LWT-Food Sci Technol. 2016;74:303–10.CrossRefGoogle Scholar
  58. 58.
    Franco CML, Preto SJDR, Ciacco CF. Factors that affect the enzymatic degradation of natural starch granules-effect of the size of the granules. Starch-Stärke. 1992;44(11):422–6.CrossRefGoogle Scholar
  59. 59.
    Lindeboom N, Chang PR, Tyler RT. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch-Stärke. 2004;56(3–4):89–99.CrossRefGoogle Scholar
  60. 60.
    Tester RF, Qi X, Karkalas J. Hydrolysis of native starches with amylases. Anim Feed Sci Technol. 2006;130(2):39–54.CrossRefGoogle Scholar
  61. 61.
    Zhang G, Hamaker BR. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Crit Rev Food Sci Nutr. 2009;49(10):852–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Colonna P, Leloup V, Buléon A. Limiting factors of starch hydrolysis. Eur J Clin Nutr. 1992;46(Suppl 2):S17–32.PubMedGoogle Scholar
  63. 63.
    Zhang G, Sofyan M, Hamaker BR. Slowly digestible state of starch: mechanism of slow digestion property of gelatinized corn starch. J Agric Food Chem. 2008;56(12):4695–702.PubMedCrossRefGoogle Scholar
  64. 64.
    Imberty A, Buléon A, Tran V, Péerez S. Recent advances in knowledge of starch structure. Starch-Stärke. 2010;43(10):375–84.CrossRefGoogle Scholar
  65. 65.
    Jane JL, Wong KS, Mcpherson AE. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr Res. 1997;300(3):219–27.CrossRefGoogle Scholar
  66. 66.
    Dreher ML, Dreher CJ, Berry JW. Starch digestibility of foods: a nutritional perspective. Crit Rev Food Sci Nutr. 1984;20(1):47–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Rathod RP, Annapure US. Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing. LWT-Food Sci Technol. 2017;80:121–30.CrossRefGoogle Scholar
  68. 68.
    Singh J, Dartois A, Kaur L. Starch digestibility in food matrix: a review. Trends Food Sci Technol. 2010;21(4):168–80.CrossRefGoogle Scholar
  69. 69.
    Zhang G, Ao Z, Hamaker BR. Slow digestion property of native cereal starches. Biomacromolecules. 2006;7:3252–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Huber KC, Bemiller JN. Visualization of channels and cavities of corn and sorghum starch granules. Cereal Chem. 1997;74(5):537–41.CrossRefGoogle Scholar
  71. 71.
    Englyst KN, Vinoy S, Englyst HN, Lang V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br J Nutr. 2003;89(3):329–40.CrossRefGoogle Scholar
  72. 72.
    Tester RF, Qi JKX. Starch structure and digestibility enzyme-substrate relationship. Worlds Poult Sci J. 2004;60(6):186–95.CrossRefGoogle Scholar
  73. 73.
    Bauer LL, Murphy MR, Wolf BW, Jr FG. Estimates of starch digestion in the rat small intestine differ from those obtained using in vitro time-sensitive starch fractionation assays. J Nutr. 2003;133(7):2256–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Benmoussa M, Suhendra B, Aboubacar A, Hamaker BR. Distinctive Sorghum starch granule morphologies appear to improve raw starch digestibility. Starch-Stärke. 2006;58(2):92–9.CrossRefGoogle Scholar
  75. 75.
    Fannon JE, Hauber RJ, Bemiller JN. Surface pores of starch granules. Cereal Chem. 1992;69(3):284–8.Google Scholar
  76. 76.
    Weurding RE, Veldman A, Veen WAG, Van PJ, Verstegen MW. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens. J Nutr. 2001;131(8):2336–42.PubMedCrossRefGoogle Scholar
  77. 77.
    Axelsen M, Arvidsson LR, Lönnroth P, Smith U. Breakfast glycaemic response in patients with type 2 diabetes: effects of bedtime dietary carbohydrates. Eur J Clin Nutr. 1999;53(9):706–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Weurding RE, Veldman A, Veen WA, Van PJ, Verstegen MW. Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J Nutr. 2001;131(9):2329–35.PubMedCrossRefGoogle Scholar
  79. 79.
    Hoover R, Manuel H. Effect of heat-moisture treatment on the structure and physicochemical properties of legume starches. Food Res Int. 1996;29(8):731–50.CrossRefGoogle Scholar
  80. 80.
    Zhang GY, Wang MZ, Peng SL. Controlled glucose delivery in food for optimal health. J Food Sci Biotechnol. 2010;29(4):481–7.Google Scholar
  81. 81.
    Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources. I. Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr Polym. 2005;60(4):529–38.CrossRefGoogle Scholar
  82. 82.
    Björck I, Granfeldt Y, Liljeberg H, Tovar J, Asp NG. Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr. 1994;59(3 Suppl):699S–705S.PubMedCrossRefGoogle Scholar
  83. 83.
    BeMiller JN, Whistler RL. Starch: chemistry and technology. 3rd ed. New York: Academic; 2009. Chapter 7Google Scholar
  84. 84.
    Hamaker BR, Zhang G. Starch fine structure and form related to nutritional effect, vol. 234. Boston: American Chemical Society; 2007.Google Scholar
  85. 85.
    Leloup VM, Colonna P, Ring SC, Roberts K, Wells B. Microstructure of amylose gels. Carbohydr Polym. 1992;18(3):189–97.CrossRefGoogle Scholar
  86. 86.
    Xu H, Zhang G. Slow digestion property of microencapsulated normal corn starch. J Cereal Sci. 2014;60(1):99–104.CrossRefGoogle Scholar
  87. 87.
    Katan MB, Grundy SM. Beyond low-fat diets. Vegetarian Nutr. 1997;337:563–7.Google Scholar
  88. 88.
    Rivellese AA, Giacco R, Genovese S, Patti L, Marotta G. Effects of changing amount of carbohydrate in diet on plasma lipoproteins and apolipoproteins in type II diabetic patients. Diabetes Care. 1990;13(4):446–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Giacco R, Costabile G, Riccardi G. Metabolic effects of dietary carbohydrates: the importance of food digestion. Food Res Int. 2016;88:336–41.CrossRefGoogle Scholar
  90. 90.
    Kayode J, Sola A, Adelani A, Kolawole O, Bashiru O. The role of carbohydrate in diabetic nutrition: a review. Internet J Lab Med. 2008;3:1–9.Google Scholar
  91. 91.
    Xing JJ, Li D, Wang LJ, Adhikari B. Relationship between biphasic endotherms and multi-stage gelatinization of corn starch in excess water. LWT-Food Sci Technol. 2017;81:335–42.CrossRefGoogle Scholar
  92. 92.
    Wang S, Li C, Yu J, Copeland L, Wang S. Phase transition and swelling behaviour of different starch granules over a wide range of water content. LWT-Food Sci Technol. 2014;59(2):597–604.CrossRefGoogle Scholar
  93. 93.
    Walker CE, Ross AS, Wrigley CW, Mcmaster GJ. Accelerated starch-paste characterization with the rapid visco-analyzer. Cereal Foods World. 1988;33(6):491–4.Google Scholar
  94. 94.
    Batey IL, Crosbie GB, Ross AS. Interpretation of RVA curves. Am Assoc Clin Chem Int. 2007:19–31.Google Scholar
  95. 95.
    Meadows F. Pasting process in rice flour using rapid visco analyser curves and first derivatives. Cereal Chem. 2002;79(4):559–62.CrossRefGoogle Scholar
  96. 96.
    Fox G, Visser J, Skov T, Meijerng I, Manley M. Effect of different analysis conditions on Rapid Visco Analyser malt viscograms in relation to malt of varying fermentability. J Inst Brew. 2014;120(3):183–92.CrossRefGoogle Scholar
  97. 97.
    Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, Jenkins AL, Axelsen M. Glycemic index: overview of implications in health and disease. Am J Clin Nutr. 2002;76(1):266S–73S.PubMedCrossRefGoogle Scholar
  98. 98.
    Thomas DE, Brotherhood JR, Miller JB. Plasma glucose levels after prolonged strenuous exercise correlate inversely with glycemic response to food consumed before exercise. Int J Sport Nutr. 1995;4(4):361–73.CrossRefGoogle Scholar
  99. 99.
    Zhang GY, Venkatachalam M, Hamaker BR. Structural basis for the slow digestion property of native cereal starches. Biomacromolecules. 2006;7(11):3259–66.PubMedCrossRefGoogle Scholar
  100. 100.
    Wachtershagedoorn RE, Priebe MG, Heimweg JA, Heiner AM, Englyst KN, Holst JJ, Stellaard F, Vonk RJ. The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men. J Nutr. 2006;136(6):1511–6.CrossRefGoogle Scholar
  101. 101.
    Sands AL, Leidy HJ, Hamaker BR, Maguire P, Campbell WW. Consumption of the slow-digesting waxy corn starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans. Nutr Res. 2009;29(6):383–90.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rose DJ, Venkatachalam M, Patterson J, Keshavarzian A. In vitro fecal fermentation of alginate-starch microspheres shows slow fermentation rate and increased production of butyrate. Fed Am Soc Exp Biol. 2007;21:6A1101.Google Scholar
  103. 103.
    Harbis A, Perdreau S, Vincentbaudry S. Glycemic and insulinemia meal responses modulate postprandial hepatic and intestinal lipoprotein accumulation in obese, insulin-resistant subjects. Am J Clin Nutr. 2004;80(4):896–2.PubMedCrossRefGoogle Scholar
  104. 104.
    Reddy CK, Suriya M, Vidya PV, Haripriya S. Synthesis and physico-chemical characterization of modified starches from banana (Musa, AAB) and its biological activities in diabetic rats. Int J Biol Macromol. 2017;94(Pt A):500–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.CrossRefGoogle Scholar
  106. 106.
    Huang TH, Peng G, Kota BP, Li GQ, Yamahara J, Roufogalis BD, Li Y. Anti-diabetic action of punica granatum, flower extract: activation of PPAR-γ and identification of an active component. Toxicol Appl Pharmacol. 2005;207(2):160–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Sharma B, Balomajumder C, Roy P. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chem Toxicol. 2008;46(7):2376–83.PubMedCrossRefGoogle Scholar
  108. 108.
    Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ. Endocrine reviews. Endocr Rev. 2008;29(7):777–822.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Niu CS, Chen W, Wu HT, Chegn KC, Wen YJ, Lin KC, Cheng JT. Decrease of plasma glucose by allantoin, an active principle of yam (dioscorea spp. ), in streptozotocin-induced diabetic rats. J Agric Food Chem. 2013;58(22):12031–5.CrossRefGoogle Scholar
  110. 110.
    Seal CJ, Daly ME, Thomas LC, Bal W, Birkett AM, Jeffcoat R, Mathers JC. Postprandial carbohydrate metabolism in healthy subjects and those with type 2 diabetes fed starches with slow and rapid hydrolysis rates determined in vitro. Br J Nutr. 2003;90(5):853–64.PubMedCrossRefGoogle Scholar
  111. 111.
    Golay A, Koellreutter B, Bloise D, Assal JP, Würsch P. The effect of muesli or cornflakes at breakfast on carbohydrate metabolism in type 2 diabetic patients. Diabetes Res Clin Pract. 1992;15(2):135–41.PubMedCrossRefGoogle Scholar
  112. 112.
    Olszewski PK, Shaw TJ, Grace MK, Grace MK, Höglund CE, Fredriksson R, Schiöth HB, Levine AS. Complexity of neural mechanisms underlying overconsumption of sugar in scheduled feeding: involvement of opioids, orexin, oxytocin and NPY. Peptides. 2009;30(2):226–33.PubMedCrossRefGoogle Scholar
  113. 113.
    Benelam B. Satiation, satiety and their effects on eating behavior. Nutr Bull. 2010;34(2):126–73.CrossRefGoogle Scholar
  114. 114.
    Jern S. Effects of acute carbohydrate administration on central and peripheral hemodynamic responses to mental stress. Hypertension. 1991;18(6):790–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Synowski SJ, Kop WJ, Warwick ZS, Waldstein SR. Effects of glucose ingestion on autonomic and cardiovascular measures during rest and mental challenge. J Psychosom Res. 2013;74(2):149–54.PubMedCrossRefGoogle Scholar
  116. 116.
    Gonzalez-Bono E, Rohleder N, Hellhammer DH, Salvador A, Kirschbaum C. Glucose but not protein or fat load amplifies the cortisol response to psychosocial stress. Horm Behav. 2002;41(3):328–33.PubMedCrossRefGoogle Scholar
  117. 117.
    Kirschbaum C, Gonzalez BE, Rohleder N, Gessner C, Pirke KM, Salvador A, Hellhammer DH. Effects of fasting and glucose load on free cortisol responses to stress and nicotine. J Clin Endocrinol Metab. 1997;82(4):1101–5.PubMedGoogle Scholar
  118. 118.
    Uijtdehaage SH, Shapiro D, Jaquet F. Effects of carbohydrate and protein meals on cardiovascular levels and reactivity. Biol Psychol. 1994;38(1):53–72.PubMedCrossRefGoogle Scholar
  119. 119.
    Treiber F, Kamarck TN, Sheffield D, Kapuku G, Taylor T. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosom Med. 2003;65(1):46–62.PubMedCrossRefGoogle Scholar
  120. 120.
    Fairclough SH, Houston K. A metabolic measure of mental effort. Biol Psychol. 2004;66(2):177–90.PubMedCrossRefGoogle Scholar
  121. 121.
    Benton D, Nabb S. Carbohydrate, memory, and mood. Nutr Rev. 2003;61(5 Pt 2):S61.PubMedCrossRefGoogle Scholar
  122. 122.
    Korol DL, Gold PE. Glucose, memory, and aging. Am J Clin Nutr. 1998;67(4):764S–71S.PubMedCrossRefGoogle Scholar
  123. 123.
    Kaplan RJ, Greenwood CE, Winocur G, Woleve TM. Cognitive performance is associated with glucose regulation in healthy elderly persons and can be enhanced with glucose and dietary carbohydrates. Am J Clin Nutr. 2000;72(3):825–36.PubMedCrossRefGoogle Scholar
  124. 124.
    Benton D. Carbohydrate ingestion, blood glucose and mood. Neurosci Biobehav Rev. 2002;26(3):293–308.PubMedCrossRefGoogle Scholar
  125. 125.
    Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr. 2006;84(2):274–88.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Mitra A, Gosnell BA, Schiöth HB, Grace MK, Klockars A. Chronic sugar intake dampens feeding-related activity of neurons synthesizing a satiety mediator, oxytocin. Peptides. 2010;31(7):1346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Clegg ME, Thondre PS. Molecular weight of barley β-glucan does not influence satiety or energy intake in healthy male subjects. Appetite. 2014;83:167–72.PubMedCrossRefGoogle Scholar
  128. 128.
    Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953;4(5):493–6.Google Scholar
  129. 129.
    Campfield LA, Smith FJ. Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev. 2003;83(1):25–58.PubMedCrossRefGoogle Scholar
  130. 130.
    Granfeldt Y, Liljeberg H, Drews A, Newman R, Björck I. Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am J Clin Nutr. 1994;59(5):1075–82.PubMedCrossRefGoogle Scholar
  131. 131.
    Shi YC, Cui XY, Birkett AM, Thaher MG. Slowly digestible starch product: US Patent 6890571. 2005.Google Scholar
  132. 132.
    Mueller R, Innerebner F. Slowly digestible starch product: CA Patent 2551046 A1. 2005.Google Scholar
  133. 133.
    Zhang T, Jiang B. Method for producing high temperature stable slow-slaking amidon and uses thereof: CN Patent 101117352 B. 2010.Google Scholar
  134. 134.
    Hamaker BR, Han XZ. Slowly digestible starch: EP Patent 1596843. 2005.Google Scholar
  135. 135.
    Chiu CW, Mason WR. Method of replacing fats with short chain amylose: US Patent 5711986. 1998.Google Scholar
  136. 136.
    Park I, Kim YK, Bo HK, Moon TW. Encapsulated amylosucrase-treated starch with enhanced thermal stability: preparation and susceptibility to digestion. Starch-Stärke. 2014;66(1–2):216–24.CrossRefGoogle Scholar
  137. 137.
    Rolls BJ, Drewnowski A, Ledikwe JH. Changing the energy density of the diet as a strategy for weight management. J Am Diet Assoc. 2005;105(5 Suppl 1):S98–S103.PubMedCrossRefGoogle Scholar
  138. 138.
    Yates AA. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–30.PubMedCrossRefGoogle Scholar
  139. 139.
    Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev. 2001;59(5):129–39.PubMedCrossRefGoogle Scholar
  140. 140.
    Monsivais P, Carter BE, Christiansen M, Perrigue MM, Drewnowski A. Soluble fiber dextrin enhances the satiating power of beverages. Appetite. 2011;56(1):9–14.PubMedCrossRefGoogle Scholar
  141. 141.
    Jolly-Zarrouk MTB, Fischer AM, Merinat SJ, Robin F, Lehmann U. Extended energy beverages: WO, EP Patent 1716768. 2006.Google Scholar
  142. 142.
    Kong L, Ziegler GR. Patents on fiber spinning from starches. Recent Pat Food Nutr Agric. 2012;4(3):210–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Kong L, Ziegler GR. Formation of starch-guest inclusion complexes in electrospun starch fibers. Food Hydrocoll. 2014;38(3):211–9.CrossRefGoogle Scholar
  144. 144.
    Fathi M, Mozafari MR, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol. 2012;23(1):13–27.CrossRefGoogle Scholar
  145. 145.
    Santander-Ortega MJ, Stauner T. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release Off J Control Release Soc. 2010;141(1):85–92.CrossRefGoogle Scholar
  146. 146.
    Wolf BW, Bauer LL. Effects of chemical modification on in vitro rate and extent of food starch digestion: an attempt to discover a slowly digested starch. J Agric Food Chem. 1999;47(10):4178–83.PubMedCrossRefGoogle Scholar
  147. 147.
    Svihus B. Limitations to wheat starch digestion in growing broiler chickens: a brief review. Anim Prod Sci. 2011;51(51):583–9.CrossRefGoogle Scholar
  148. 148.
    Moran ET. Digestion and absorption of carbohydrates in fowl and events through perinatal development. J Nutr. 1985;115(5):665–74.PubMedCrossRefGoogle Scholar
  149. 149.
    Zaefarian F, Abdollahi MR, Ravindran V. Starch digestion in broiler chickens fed cereal diets. Anim Feed Sci Technol. 2015;209:16–29.CrossRefGoogle Scholar
  150. 150.
    Winowiski TS. Ruminant feed method of making and method of using: US Patent 5023091. 1991.Google Scholar
  151. 151.
    Weurding RE, Enting H, Verstegen MWA. The effect of site of starch digestion on performance of broiler chickens. Anim Feed Sci Technol. 2003;110(1):175–84.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations