Whole-Genome Association Analysis of Treatment Response from Obsessive-Compulsive Disorder

  • McKenzie Ritter
  • Haide Qin
Part of the Translational Bioinformatics book series (TRBIO, volume 13)


Up to 30% of individuals with obsessive-compulsive disorder (OCD) display an inadequate response to serotonin reuptake inhibitors (SRIs). Genetic predictors of OCD treatment response have not been efficiently examined using a genome-wide association study (GWAS). In order to identify genetic variations that could potentially influence SRI response, a GWAS with 804 OCD patients containing information on SRI response was conducted. SRI response was used based on self-reported data and characterized as “response” (N = 514) or “non-response” (N = 290). The more powerful quasi-likelihood score (MQLS) test was used to conduct a genome-wide association test correcting for relatedness. An adjusted logistic model was then used to examine the effect size of the variants in probands. The most significant SNP found was rs17162912 (P = 1.76 × 10−8), which is near the gene DISP1 on 1q41–q42, a microdeletion region that has been implicated in neurological development. Six other SNPs showed evidence of association (P < 10−5): rs9303380, rs12437601, rs16988159, rs7676822, rs1911877, and rs723815. Two of the SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, are located near the PCDH10 gene and had p-values of 2.86 × 10−6 and 8.41 × 10−6, respectively. The 35 other variations with a p-value <10−4 are involved with multiple genes expressed in the brain, including BRIN2B, PCDH10, and GPC6. The enrichment analysis suggested that there may be genes that play a role in the glutamatergic neurotransmission system (FDR = 0.0097) and the serotonergic system (FDR = 0.0213). The results of this study could provide new insights into genetic mechanisms underlying treatment response in OCD, but studies with larger sample sizes and more detailed information on drug dosage, as well as treatment duration, are needed.


  1. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature. 2012;486(7403):410–4. [PubMed: 22722203].CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alonso P, Gratacos M, Segalas C, Escaramis G, Real E, Bayes M, et al. Association between the NMDA glutamate receptor GRIN2B gene and obsessive-compulsive disorder. J Psychiatry Neurosci. 2012;37(4):273–81. [PubMed: 22433450].CrossRefPubMedPubMedCentralGoogle Scholar
  3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-IV). Washington, DC: Psychiatric Press; 1994.Google Scholar
  4. Arnold PD, Rosenberg DR, Mundo E, Tharmalingam S, Kennedy JL, Richter MA. Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: a preliminary study. Psychopharmacology. 2004;174(4):530–8. [PubMed: 15083261].CrossRefPubMedGoogle Scholar
  5. Arnold PD, Macmaster FP, Hanna GL, Richter MA, Sicard T, Burroughs E, et al. Glutamate system genes associated with ventral prefrontal and thalamic volume in pediatric obsessive-compulsive disorder. Brain Imaging Behav. 2009;3(1):64–76. [PubMed: 21031159].CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brandl EJ, Muller DJ, Richter MA. Pharmacogenetics of obsessive-compulsive disorders. Pharmacogenomics. 2012;13(1):71–81. [PubMed: 22176623].CrossRefPubMedGoogle Scholar
  7. Brandl EJ, Tiwari AK, Zhou X, Deluce J, Kennedy JL, Muller DJ, et al. Influence of CYP2D6 and CYP2C19 gene variants on antidepressant response in obsessive-compulsive disorder. Pharmacogenomics J. 2014;14(2):176–81. [PubMed: 23545896].CrossRefPubMedGoogle Scholar
  8. Chelala C, Khan A, Lemoine NR. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms. Bioinformatics. 2009;25(5):655–61. [PubMed: 19098027].CrossRefPubMedGoogle Scholar
  9. Davis KL, Charney D, Coyle JT, Nemeroff C. Neuropsychopharmacology: the fifth generation of progress. Philadelphia: Lippincott Williams & Wilkins; 2002.Google Scholar
  10. Di Bella D, Erzegovesi S, Cavallini MC, Bellodi L. Obsessive-Compulsive Disorder, 5-HTTLPR polymorphism and treatment response. Pharmacogenomics J. 2002;2(3):176–81. [PubMed: 12082589].CrossRefPubMedGoogle Scholar
  11. Etheridge LA, Crawford TQ, Zhang S, Roelink H. Evidence for a role of vertebrate Disp1 in long-range Shh signaling. Development. 2010;137(1):133–40. [PubMed: 20023168].CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ferguson JM. SSRI antidepressant medications: Adverse effects and tolerability. Prim Care Companion J Clin Psychiatry. 2001;3(1):22–7. [PubMed: 15014625].CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hindorff LAMJ, Morales J, Junkins HA, Hall PN, Klemm AK, Manolio TA. A catalog of published genome-wide association studies. 2013. URL:
  14. Jun KR, Hur YJ, Lee JN, Kim HR, Shin JH, Oh SH, et al. Clinical characterization of DISP1 haploinsufficiency: a case report. Eur J Med Genet. 2013;56:309–13.CrossRefPubMedGoogle Scholar
  15. Kim SY, Chung HS, Sun W, Kim H. Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience. 2007;147(4):996–1021. [PubMed: 17614211].CrossRefPubMedGoogle Scholar
  16. Korf BR, Rehm HL. New approaches to molecular diagnosis. JAMA. 2013;309(14):1511–21. [PubMed: 23571590].CrossRefPubMedGoogle Scholar
  17. Mattheisen M, Samuels JF, Wang Y, Greenberg BD, Fyer AJ, JT MC, et al. Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS. Mol Psychiatry. 2014;20:337–44.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, et al. Identifying autism loci and genes by tracing recent shared ancestry. Science. 2008;321(5886):218–23. [PubMed: 18621663].CrossRefPubMedPubMedCentralGoogle Scholar
  19. Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci. 2008;9(2):85–96. [PubMed: 18209729].CrossRefPubMedGoogle Scholar
  20. Nestadt G, Grados M, Samuels JF. Genetics of obsessive-compulsive disorder. Psychiatr Clin North Am. 2010;33(1):141–58. [PubMed: 20159344].CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26(18):2336–7. [PubMed: 20634204].Google Scholar
  22. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. [PubMed: 17701901].CrossRefPubMedPubMedCentralGoogle Scholar
  23. Qin H, Samuels JF, Wang Y, Zhu Y, Grados MA, Riddle MA, et al. Whole-genome association analysis of treatment response in obsessive-compulsive disorder. Mol Psychiatry Macmillan Publishers Limited. 2015;21:270. Scholar
  24. Redies C, Hertel N, Hubner CA. Cadherins and neuropsychiatric disorders. Brain Res. 2012;1470:130–44. [PubMed: 22765916].CrossRefPubMedGoogle Scholar
  25. Samuels JF, Riddle MA, Greenberg BD, Fyer AJ, McCracken JT, Rauch SL, et al. The OCD collaborative genetics study: methods and sample description. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(3):201–7. [PubMed: 16511842].Google Scholar
  26. Sangkuhl K, Klein TE, Altman RB. Selective serotonin reuptake inhibitors pathway. Pharmacogenet Genomics. 2009;19(11):907–9. [PubMed: 19741567].CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shugart YY, Samuels J, Willour VL, Grados MA, Greenberg BD, Knowles JA, et al. Genomewide linkage scan for obsessive-compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q, and 6q. Mol Psychiatry. 2006;11(8):763–70. [PubMed: 16755275].CrossRefPubMedGoogle Scholar
  28. Shugart YY, Wang Y, Samuels JF, Grados MA, Greenberg BD, Knowles JA, et al. A family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder in 378 families. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(6):886–92. [PubMed: 19152386].CrossRefPubMedGoogle Scholar
  29. Stewart SEFJ, Moorjani J, Jenike E, Beattie K, Illmann C, Delorme R, Leboyer M, Sedovic M, Smoller J, Jenike M, Pauls D. Family-based association between obsessive compulsive disorder and glutamate receptor candidate genes. New York: World Congress of Psychiatric Genetics; 2007.Google Scholar
  30. Stewart SE, Yu D, Scharf JM, Neale BM, Fagerness JA, Mathews CA, et al. Genome-wide association study of obsessive-compulsive disorder. Mol Psychiatry. 2013;18(7):788–98. [PubMed: 22889921].CrossRefPubMedGoogle Scholar
  31. Tansey KE, Guipponi M, Perroud N, Bondolfi G, Domenici E, Evans D, et al. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med. 2012;9(10):e1001326. [PubMed: 23091423].CrossRefPubMedPubMedCentralGoogle Scholar
  32. Taylor S. Molecular genetics of obsessive-compulsive disorder: a comprehensive meta-analysis of genetic association studies. Mol Psychiatry. 2013;18(7):799–805. [PubMed: 22665263].CrossRefPubMedGoogle Scholar
  33. Thornton T, McPeek MS. Case-control association testing with related individuals: a more powerful quasilikelihood score test. Am J Hum Genet. 2007;81(2):321–37. [PubMed: 17668381].Google Scholar
  34. Voyiaziakis E, Evgrafov O, Li D, Yoon HJ, Tabares P, Samuels J, et al. Association of SLC6A4 variants with obsessive-compulsive disorder in a large multicenter US family study. Mol Psychiatry. 2012;16(1):108–20. [PubMed: 19806148].CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • McKenzie Ritter
    • 1
  • Haide Qin
    • 2
  1. 1.Unit of Statistical Genomics, Division of Intramural Research ProgramNational Institute of Mental HealthBethesdaUSA
  2. 2.Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations