Discussion on Changes of Brachiopod Diversity and Morphologic Features and Their Implications for the Environmental and Biological Crisis of the Great Dying

  • Wei-Hong HeEmail author
  • G. R. Shi
  • Jian-Jun Bu
Part of the New Records of the Great Dying in South China book series (NRGDSC)


As concluded in Chap.  6, the decline of brachiopod diversity in deep-water facies took place earlier than in shallow-water facies during the PermianTriassic transition. This phenomenon lets us recall the scenario that the upward migration of anoxic deep waters in a stratified ocean caused the radiolarian extinction in a Japanese pelagic environment (Isozaki 2009; Takahashi et al. 2013). Therefore, elsewhere we have proposed that the formation of a stratified ocean and, particularly, upward migration of the chemocline (or Oxygen Minimum Zone) in the stratified ocean was possibly responsible for this bathymetry-dependent differential temporal pattern of brachiopod disappearance across the PTB in South China (Fig. 8.1; He et al. 2015). Furthermore, the ocean stratification and upward migration of the chemocline was most likely linked to contemporaneous sustained volcanism. This was evidenced by the frequent occurrences of volcanic ash beds around the horizons where the diversity declined (Fig.  6.2).


  1. Afanasjeva GA. 2008. Morphological study of the brachiopods of the Order Chonetida. Paleontological Journal, 42: 825–829.CrossRefGoogle Scholar
  2. Afanasjeva GA. 2009. Changes in the communities of Paleozoic brachiopods due to their development of their filtering system. Paleontological Journal, 43: 1378–1389.CrossRefGoogle Scholar
  3. Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ. 2011. Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308: 1–11.CrossRefGoogle Scholar
  4. Algeo TJ, Henderson CM, Ellwood B, Rowe H, Elswick E, Bates S, Lyons T, Hower JC, Smith C, Maynard B, Hays LE, Summons R, Fulton J, Freeman KH. 2012. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geological Society of America Bulletin, 124: 1424–1448.CrossRefGoogle Scholar
  5. Algeo TJ, Henderson CM, Tong JN, Feng QL, Yin HF, Tyson RV. 2013. Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes. Global Planetary Change, 105: 52–67.CrossRefGoogle Scholar
  6. Beauchamp B, Baud A. 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 37–63.CrossRefGoogle Scholar
  7. Bond DPG, Wignall PB. 2010. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin, 122: 1265–1279.CrossRefGoogle Scholar
  8. Chen J, Chen ZQ, Tong JN. 2011. Environmental determinants and ecologic selectivity of benthic faunas from nearshore to bathyal zones in the end-Permian mass extinction: Brachiopod evidence from South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 308: 84–97.CrossRefGoogle Scholar
  9. Chen ZQ, Kaiho K, George AD. 2005. Survival strategies of brachiopod faunas from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 224: 232–269.CrossRefGoogle Scholar
  10. Chen ZQ, Yang H, Luo M, Benton MJ, Kaiho K, Zhao LS, Huang YG, Zhang KX, Fang YH, Jiang HS, Qiu H, Li Y, Tu CY, Shi L, Zhang L, Feng XQ, Chen L. 2015. Complete biotic and sedimentary records of the Permian–Triassic transition from Meishan section, South China: Ecologically assessing mass extinction and its aftermath. Earth-Science Reviews, 149: 63–103.Google Scholar
  11. Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET. 2015. Ocean acidification and the Permo–Triassic mass extinction. Science, 348: 229–232.CrossRefGoogle Scholar
  12. Feng QL, Algeo TJ. 2014. Evolution of oceanic redox conditions during the Permo–Triassic: Evidence from radiolarian deepwater facies. Earth Science Reviews, 137: 34–51.CrossRefGoogle Scholar
  13. Feng QL, He WH, Gu SZ, Meng YY, Jin YX, Zhang F. 2007. Radiolarian evolution during the latest Permian in South China. Global and Planetary Change, 55: 177–192.CrossRefGoogle Scholar
  14. Fürsich FT, Hurst JM. 1974. Environmental factors determining the distribution of brachiopods. Palaeontology, 17: 879–900.Google Scholar
  15. Georgiev SV, Horner TJ, Stein HJ, Hannah JL, Bingen B, Rehkämper M. 2015. Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event. Earth and Planetary Science Letters, 410: 84–96.CrossRefGoogle Scholar
  16. Grant RE. 1968. Structural adaptation in two Permian brachiopod genera, Salt Range, West Pakistan. Journal of Paleontology, 42: 1–32.Google Scholar
  17. Grasby SE, Beauchamp B, Bond DPG, Wignall P, Talavera C, Galloway JM, Piepjohn K, Reinhardt L, Blomeier D. 2015. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Geological Society of America Bulletin, 127: 1331–1347.CrossRefGoogle Scholar
  18. He WH, Twitchett RJ, Zhang Y, Shi GR, Feng QL, Yu JX, Wu SB, Peng XF. 2010. Controls on body size during the Late Permian mass extinction event. Geobiology, 8: 391–402.CrossRefGoogle Scholar
  19. He WH, Shi GR, Zhang Y, Yang TL, Teng F, Wu SB. 2012. Systematics and palaeoecology of Changhsingian (Late Permian) Ambocoeliidae brachiopods from South China and implications for the end-Permian mass extinction. Alcheringa, 36: 515–530.CrossRefGoogle Scholar
  20. He WH, Shi GR, Zhang Y, Yang TL, Zhang KX, Wu SB, Niu ZJ, Zhang ZY. 2014. Changhsingian (latest Permian) deep-water brachiopod fauna from South China. Journal of Systematic Palaeontology, 12: 907–960.CrossRefGoogle Scholar
  21. He WH, Shi GR, Twitchett RJ, Zhang Y, Zhang KX, Song HJ, Yue ML, Wu SB, Wu HT, Yang TL, Xiao YF. 2015. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology, 13: 123–138.CrossRefGoogle Scholar
  22. He WH, Shi GR, Xiao YF, Zhang KX, Yang TL, Wu HT, Zhang Y, Chen B, Yue ML, Shen J, Wang YB, Yang H, Wu SB. 2017. Body-size changes of latest Permian brachiopods in varied palaeogeographic settings in South China and implications for controls on animal miniaturization in a highly stressed marine ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecolog, 486: 33–45.CrossRefGoogle Scholar
  23. Huang YG, Chen ZQ, Wignall PB, Zhao LS. 2017. Latest Permian to Middle Triassic redox condition variations in ramp settings, South China: Pyrite framboid evidence. Geological Society of America Bulletin, 129: 229–243.CrossRefGoogle Scholar
  24. Isozaki Y. 2009. Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: The G–LB and PTB events from a Panthalassan perspective. Journal of Asian Earth Sciences, 36: 459–480.CrossRefGoogle Scholar
  25. Isozaki Y, Shimizu N, Yao JX, Ji ZS, Matsuda T. 2007. End-Permian extinction and volcanism-induced environmental stress: The Permian–Triassic boundary interval of lower-slope facies at Chaotian, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 252: 218–238.CrossRefGoogle Scholar
  26. Jensen MM, Petersen J, Dalsgaard T, Thamdrup B. 2009. Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Marine Chemistry, 113: 102–113.CrossRefGoogle Scholar
  27. Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH. 2000. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science, 289: 432–436.CrossRefGoogle Scholar
  28. Joachimski MM, Lai XL, Shen SZ, Jiang HS, Luo GM, Chen B, Chen J, Sun YD. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology, 40: 195–198.CrossRefGoogle Scholar
  29. Kearsey T, Twitchett RJ, Price GD, Grimes ST. 2009. Isotope excursions and palaeotemperature estimates from the Permian/Triassic Boundary in the Italian Dolomites. Palaeogeography, Palaeoclimatology, Palaeoecology, 279: 29–40.CrossRefGoogle Scholar
  30. Levin LA. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Annual Review of Oceanography and Marine Biology, 41: 1–45.Google Scholar
  31. Li GS, Wang YB, Shi GR, Liao W, Yu LX. 2016. Fluctuations of redox conditions across the Permian–Triassic boundary-new evidence from the GSSP section in Meishan of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 48–58.CrossRefGoogle Scholar
  32. Liao ZT. 1979. Brachiopod Assemblage Zone of Changhsing Stage and brachiopods from Permo–Triassic Boundary Beds in China. Acta Stratigraphica Sinica, 3: 200–208. [in Chinese].Google Scholar
  33. Luo GM, Algeo TJ, Huang JH, Zhou WF, Wang YB, Yang H, Richoz S, Xie SC. 2014. Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 119–131.CrossRefGoogle Scholar
  34. Nabbefeld B, Grice K, Twitchett RJ, Summons RE, Hays L, Böttcher ME, Asif M. 2010. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291: 84–96.CrossRefGoogle Scholar
  35. Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu MY, Wei JY. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences, 107: 8543–8548.CrossRefGoogle Scholar
  36. Pei Y, Chen ZQ, Fang YH, Kershaw S, Wu SQ, Luo M. 2017. Volcanism, redox conditions, and microbialite growth linked with the end-Permian mass extinction: Evidence from the Xiajiacao section (western Hubei Province), South China. Palaeogeography, Palaeoclimatology, Palaeoecology, online.Google Scholar
  37. Sano H, Wada T, Naraoka H. 2012. Late Permian to Early Triassic environmental changes in the Panthalassic Ocean: Record from the seamount-associated deep-marine siliceous rocks, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 363–364: 1–10.CrossRefGoogle Scholar
  38. Saunders A, Reichow M. 2009. The Siberian Traps and the End-Permian mass extinction: a critical review. Chinese Science Bulletin, 54: 20–37.CrossRefGoogle Scholar
  39. Shen J, Lei Y, Algeo TJ, Feng QL, Servais T, Yu JX, Zhou L. 2013. Volcanic effects on microplankton during the Permian–Triassic transition (Shangsi and Xinming, South China). Palaios, 28: 552–567.CrossRefGoogle Scholar
  40. Shen SZ, Cao CQ, Henderson CM, Wang XD, Shi GR, Wang Y, Wang W. 2006. End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld, 15: 3–30.CrossRefGoogle Scholar
  41. Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen YA, Wang XD, WangW, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG. 2011. Calibrating the End-Permian Mass Extinction. Science, 334: 1367–1372.CrossRefGoogle Scholar
  42. Shi GR, Zhang YC, Shen SZ, He WH. 2016. Nearshore–offshore–basin species diversity and body size variation patterns in Late Permian (Changhsingian) brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 96–107.Google Scholar
  43. Song HJ, Wignall PB, Tong JN, Yin HF. 2013. Two pulses of extinction during the Permian–Triassic crisis. Nature Geoscience, 6: 52–56.CrossRefGoogle Scholar
  44. Song HJ, Wignall PB, Chu DL, Tong JN, Sun YD, Song HY. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports. 4(4): 4132.Google Scholar
  45. Song HY, Tong JN, Tian L, Song HJ, Qiu HO, Zhu YY, Algeo TJ. 2014. Paleo-redox conditions across the Permian–Triassic boundary in shallow carbonate platform of the Nanpanjiang Basin, South China. Science China Earth Sciences, 57: 1030–1038.CrossRefGoogle Scholar
  46. Sun YD, Joachimski MM, Wignall PB, Yan CB, Chen YL, Jiang HS, Wang LN, Lai XL. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366–370.CrossRefGoogle Scholar
  47. Takahashi S, Yamakita S, Suzuki N, Kaiho K, Ehiro M. 2009. High organic carbon content and a decrease in radiolarians at the end of the Permian in a newly discovered continuous pelagic section: A coincidence? Palaeogeography, Palaeoclimatology, Palaeoecology, 271: 1–12.CrossRefGoogle Scholar
  48. Takahashi S, Kaiho K, Hori RS, Gorjan P, Watanabe T, Yamakita S, Aita Y, Takemura A, Sp€orli KB, Kakegawa T, Oba M. 2013. Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian–Triassic transition. Global and Planetary Change, 105: 68–78.CrossRefGoogle Scholar
  49. Tavakoli V, Naderi-Khujin M, Seyedmehdi Z. 2017. The end-Permian regression in the western Tethys: sedimentological and geochemical evidence from offshore the Persian Gulf, Iran. Geo-Marine Letters, 38: 179–192.CrossRefGoogle Scholar
  50. Thayer CW. 1986. Respiration and the function of brachiopod punctae. Lethaia, 19: 23–31.CrossRefGoogle Scholar
  51. Twitchett RJ. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252: 132–144.CrossRefGoogle Scholar
  52. Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian mass extinction event. Geology, 29: 351–354.CrossRefGoogle Scholar
  53. Wang Y, Shen SZ, Zhang YC, Wang XD, Wang W, Sadler PM, Erwin DH, Crowley JL, Henderson CM. 2014. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology, 41: 113–129.CrossRefGoogle Scholar
  54. Westbroek P, Yanagida J, Isa Y. 1980. Functional morphology of brachiopod and coral skeletal structures supporting ciliated epithelia. Paleobiology, 6: 313–330.CrossRefGoogle Scholar
  55. Williams A, Brunton CHC, Carlson SJ, Baker PG, Carter JL, Curry GB, Dagys AS, Gourvennec R, Hou HF, Jin YG, Johnson JG, Lee DE, MacKinnon DI, Racheboeuf PR, Smirnova TN, Sun DL. 2006. Rhynchonelliformea (part), p. 1689–1937. In: Williams A et al. (Eds), Treatise on Invertebrate Paleontology, Part H, Brachiopoda (revised) 5, Rhynchonelliformea (part). Geological Society of America and University of Kansas, Boulder and Lawrence.Google Scholar
  56. Wu SB, Wei M, Zhang KX. 1986. Facies changes and controlling factors of the Late Permian Changxing limestone in the Changxing area. Geological Review, 32: 419–425. [in Chinese with English abstract].Google Scholar
  57. Wu HT, He WH, Weldon EA. 2018. Prelude of benthic community collapse during the end-Permian mass extinction in siliciclastic offshore sub-basin: Brachiopod evidence from South China. Global and Planetary Change, 163: 158–170.CrossRefGoogle Scholar
  58. Xiang L, Schoepfer SD, Zhang H, Yuan DX, Cao CQ, Zheng QF, Henderson CM, Shen SZ. 2016. Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 59–71.CrossRefGoogle Scholar
  59. Yang JH, Cawood PA, Du YS, Huang H, Huang HM, Tao P. 2012. Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China. Sedimentary Geology, 261–262: 120–131.CrossRefGoogle Scholar
  60. Yang ZY, Wu SB, Yin HF, Xu GR, Zhang KX. 1991. Permo–Triassic Events of South China. Geological Publishing House, Beijing, 183 pp. [in Chinese with English abstract].Google Scholar
  61. Yin HF, Xie SC, Luo G, Algeo TJ, Zhang K. 2012. Two episodes of environmental change at the Permian–Triassic boundary of the GSSP section Meishan. Earth-Science Reviews, 115: 163–172.CrossRefGoogle Scholar
  62. Yin HF, Jiang HS, Xia WC, Feng QL, Zhang N, Shen J. 2014. The end-Permian regression in South China and its implication on mass extinction. Earth-Science Reviews, 137: 19–33.CrossRefGoogle Scholar
  63. Zhang KX, Tong JN, Yin HF, Wu SB. 1997. Sequence stratigraphy of the Permian–Triassic Boundary Section of Changxing, Zhejiang, southern China. Acta Geologica Sinica, 71: 90–103.Google Scholar
  64. Zhang L, Feng QL, He WH. 2017. Permian radiolarian biostratigraphy. In: Lucas SG, Shen SZ (eds), The Permian timescale, London: Geological Society. 450: 143–163.Google Scholar
  65. Zhang Y, Shi GR, Wu HT, Yang TL, He WH, Yuan AH, Lei Y. 2017. Community replacement, ecological shift and early warning signals prior to the end-Permian mass extinction: A case study from a nearshore clastic-shelf section in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 487: 118–135.CrossRefGoogle Scholar
  66. Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B. 2001. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Marine Chemistry, 74: 29–51.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.School of Life and Environmental SciencesBurwoodAustralia
  3. 3.Deakin UniversityGeelongAustralia
  4. 4.Wuhan Centre for China Geological SurveyWuhanChina

Personalised recommendations