Evolution of Brachiopod Species Diversity Across the PTB in Varied Palaeogeographic Settings

  • Wei-Hong HeEmail author
  • G. R. Shi
Part of the New Records of the Great Dying in South China book series (NRGDSC)


The study on biodiversity evolution and occurrences of organisms is of importance for the study of mass-extinction patterns and causes. Numerous works have documented and discussed the patterns and processes of the PermianTriassic extinction, resulting in the proposition of a variety of scenarios concerning the nature of these extinction, including one-episode, two-episode and multiple-episode models (or even more complex processes) (Yang et al. 1991; Shen and Shi 1996, 2002; Jin et al. 2000; Feng et al. 2007; Shen et al. 2011; Song et al. 2013; Wang et al. 2014; He et al. 2015; Grasby et al. 2015).


  1. Algeo TJ, Henderson CM, Tong JN, Feng QL, Yin HF, Tyson RV. 2013. Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes. Global Planetary Change, 105: 52–67.CrossRefGoogle Scholar
  2. Basu AR, Petaev MI, Poreda RJ, Jacobsen SB, Becker L. 2003. Chondritic Meteorite Fragments Associated with the Permian–Triassic Boundary in Antarctica. Science, 302: 1388–1392.CrossRefGoogle Scholar
  3. Burgess SD, Muirhead JD, Bowring SA. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications, 8: 164.CrossRefGoogle Scholar
  4. Chen B, Joachimski MM, Shen SZ, Lambert LL, Lai XL, Wang XD, Chen J, Yuan DX. 2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research, 24: 77–89.CrossRefGoogle Scholar
  5. Chen J, Henderson CM, Shen SZ. 2008. Conodont succession around the Permian–Triassic Boundary at the Huangzhishan section, Zhejiang and its stratigraphic correlation. Acta Palaeontologica Sinica, 47: 91–114.Google Scholar
  6. Chen ZQ, Tong JN, Zhang KX, Yang H, Liao ZT, Song HJ, Chen J. 2009. Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Australian Journal of Earth Sciences, 56: 775–797.CrossRefGoogle Scholar
  7. Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET. 2015. Ocean acidification and the Permo–Triassic mass extinction. Science, 348: 229–232.CrossRefGoogle Scholar
  8. Clarkson MO, Wood RA, Poulton SW, Richoz S, Newton RJ, Kasemann SA, Bowyer F, Krystyn L. 2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications, 7: 12236.CrossRefGoogle Scholar
  9. Cui Y, Kump LR. 2015. Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Reviews, 149: 5–22.CrossRefGoogle Scholar
  10. Feng QL, He WH, Gu SZ, Meng YY, Jin YX, Zhang F. 2007. Radiolarian evolution during the latest Permian in South China. Global and Planetary Change, 55: 177–192.CrossRefGoogle Scholar
  11. Foster WJ, Twitchett RJ. 2014. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nature Geoscience, 7: 233–238.CrossRefGoogle Scholar
  12. Grasby SE, Beauchamp B, Bond DPG, Wignall P, Talavera C, Galloway JM, Piepjohn K, Reinhardt L, Blomeier D. 2015. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Geological Society of America Bulletin, 127: 1331–1347.CrossRefGoogle Scholar
  13. He WH, Twitchett RJ, Zhang Y, Shi GR, Feng QL, Yu JX, Wu SB, Peng XF. 2010. Controls on body size during the Late Permian mass extinction event. Geobiology, 8: 391–402.CrossRefGoogle Scholar
  14. He WH, Shi GR, Twitchett RJ, Zhang Y, Zhang KX, Song HJ, Yue ML, Wu SB, Wu HT, Yang TL, Xiao YF. 2015. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology, 13: 123–138.CrossRefGoogle Scholar
  15. Heydari E, Arzani N, Hassanzadeh J. 2008. Mantle plume: The invisible serial killer–Application to the Permian–Triassic boundary mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 264: 147–162.CrossRefGoogle Scholar
  16. Huang YG, Chen ZQ, Wignall PB, Zhao LS. 2017. Latest Permian to Middle Triassic redox condition variations in ramp settings, South China: Pyrite framboid evidence. Geological Society of America Bulletin, 129: 229–243.CrossRefGoogle Scholar
  17. Isozaki Y. 2009. Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: The G–LB and PTB events from a Panthalassan perspective. Journal of Asian Earth Sciences, 36: 459–480.CrossRefGoogle Scholar
  18. Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH. 2000. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science, 289: 432–436.CrossRefGoogle Scholar
  19. Joachimski MM, Lai XL, Shen SZ, Jiang HS, Luo GM, Chen B, Chen J, Sun YD. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology, 40: 195–198.CrossRefGoogle Scholar
  20. Li GS, Wang YB, Shi GR, Liao W, Yu LX. 2016. Fluctuations of redox conditions across the Permian–Triassic boundary-new evidence from the GSSP section in Meishan of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 48–58.CrossRefGoogle Scholar
  21. Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu MY, Wei JY. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences, 107: 8543–8548.CrossRefGoogle Scholar
  22. Retallack GJ, Seyedolali A, Krull ES, Holser WT, Ambers CP, Kyte FT. 1998. Search for evidence of impact at the Permian–Triassic boundary in Antarctica and Australia. Geology, 26: 979–982.CrossRefGoogle Scholar
  23. Richards JP, Şengör AMC. 2017. Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation? Geology, 45: 591–594.CrossRefGoogle Scholar
  24. Shen J, Feng QL, Algeo TJ, Li C, Planavsky NJ, Zhou L, Zhang ML. 2016. Two pulses of oceanic environmental disturbance during the Permian–Triassic boundary crisis. Earth and Planetary Science Letters, 443: 139–152.CrossRefGoogle Scholar
  25. Shen SZ, Shi GR. 1996. Diversity and extinction patterns of Permian brachiopoda of South China. Historical Biology, 12: 93–110.CrossRefGoogle Scholar
  26. Shen SZ, Shi GR. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian–western Pacific region. Paleobiology, 28: 449–463.CrossRefGoogle Scholar
  27. Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen YA, Wang XD, WangW, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG. 2011. Calibrating the End-Permian Mass Extinction. Science, 334: 1367–1372.CrossRefGoogle Scholar
  28. Song HJ, Wignall PB, Tong JN, Yin HF. 2013. Two pulses of extinction during the Permian–Triassic crisis. Nature Geoscience, 6: 52–56.CrossRefGoogle Scholar
  29. Takahashi S, Kaiho K, Hori RS, Gorjan P, Watanabe T, Yamakita S, Aita Y, Takemura A, Sp€orli KB, Kakegawa T, Oba M. 2013. Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian–Triassic transition. Global and Planetary Change, 105: 68–78.CrossRefGoogle Scholar
  30. Tavakoli V, Naderi-Khujin M, Seyedmehdi Z. 2017. The end-Permian regression in the western Tethys: sedimentological and geochemical evidence from offshore the Persian Gulf, Iran. Geo-Marine Letters, 38: 179–192.CrossRefGoogle Scholar
  31. Wang Y, Shen SZ, Zhang YC, Wang XD, Wang W, Sadler PM, Erwin DH, Crowley JL, Henderson CM. 2014. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology, 41: 113–129.CrossRefGoogle Scholar
  32. Xiang L, Schoepfer SD, Zhang H, Yuan DX, Cao CQ, Zheng QF, Henderson CM, Shen SZ. 2016. Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 59–71.CrossRefGoogle Scholar
  33. Yang ZY, Yin HF, Wu SB, Yang FQ, Ding MH, Xu GR. 1987. Permian–Triassic boundary stratigraphy and fauna of South China. Geological Publishing House, Beijing, 378 pp. [in Chinese with English abstract].Google Scholar
  34. Yang ZY, Wu SB, Yin HF, Xu GR, Zhang KX. 1991. Permo–Triassic Events of South China. Geological Publishing House, Beijing, 183 pp. [in Chinese with English abstract].Google Scholar
  35. Yin HF, Zhang KX, Tong JN, Yang ZY, Wu SB. 2001. The Global Stratotype Section and Point (GSSP) of the Permian–Triassic boundary. Episodes, 24: 102–114.Google Scholar
  36. Yin HF, Jiang HS, Xia WC, Feng QL, Zhang N, Shen J. 2014. The end-Permian regression in South China and its implication on mass extinction. Earth-Science Reviews, 137: 19–33.CrossRefGoogle Scholar
  37. Yuan DX, Shen SZ, Henderson CM, Chen J, Zhang H, Feng HZ. 2014. Revised conodont-based integrated high-resolution timescale for the Changhsingian Stage and end-Permian extinction interval at the Meishan sections, South China. Lithos, 204: 220–245.CrossRefGoogle Scholar
  38. Zhang ZY, He WH, Zhang Y, Yang TL, Wu SB. 2009. Late Permian–earliest Triassic ammonoid sequences from the Rencunping section, Sangzhi County, Hunan Province, South China and their regional correlation. Geological Science and Technology Information, 28: 23–30. [in Chinese with English abstract].Google Scholar
  39. Zhang Y, Shi GR, He WH, Wu HT, Lei Y, Zhang KX, Du CC, Yang TL, Yue ML, Xiao YF. 2016. Significant pre-mass extinction animal body-size changes: evidence from the Permian–Triassic boundary brachiopod faunas of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 85–95.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.School of Life and Environmental SciencesBurwoodAustralia
  3. 3.Deakin UniversityGeelongAustralia

Personalised recommendations