Advertisement

Formal Collision Avoidance Analysis for Rigorous Building of Autonomous Marine Vehicles

  • Rongjie Yan
  • Xiangtong Yao
  • Junjie Yang
  • Kai Huang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 857)

Abstract

The prosperity of autonomous vehicles puts forward the even higher and stricter requirement for safe navigation. Collision avoidance is an essential ingredient to ensure safety for these vehicles. Instead of designing an optimization algorithm to avoid collision, we investigate the fundamental rules of collision avoidance for autonomous marine vessels. In the investigation, to analyze the completeness and consistency of the rules, we enumerate all the encountering scenarios and present the through analysis from various perspectives. To check the effectiveness of the rules, we also construct a formal model for autonomous vessels in navigation. Primary experimental results have demonstrated that applying current rules is not sufficient to avoid collision. More precise standards or facilitated strategies are necessary to guarantee safety for the navigation of autonomous marine vessels.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anderson, S.J., Karumanchi, S.B., Iagnemma, K.: Constraint-based planning and control for safe, semi-autonomous operation of vehicles. In: 2012 IEEE Intelligent Vehicles Symposium (IV), pp. 383–388. IEEE (2012)Google Scholar
  3. 3.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30080-9_7CrossRefGoogle Scholar
  4. 4.
    Yu, L., Niu, H., Savvaris, A., Tsourdos, A.: Verifying collision avoidance behaviours for unmanned surface vehicles using probabilistic model checking. IFAC-PapersOnLine 49(23), 127–132 (2016)CrossRefGoogle Scholar
  5. 5.
    Perera, L.P., Ferrari, V., Santos, F.P., Hinostroza, M.A., Soares, C.G.: Experimental evaluations on ship autonomous navigation and collision avoidance by intelligent guidance. IEEE J. Ocean. Eng. 40(2), 374–387 (2015)CrossRefGoogle Scholar
  6. 6.
    Perera, L.P., Carvalho, J.P., Soares, C.G.: Autonomous guidance and navigation based on the COLREGS rules and regulations of collision avoidance. In: Proceedings of the International Workshop Advanced Ship Design for Pollution Prevention, pp. 205–216 (2009)CrossRefGoogle Scholar
  7. 7.
    Pietrzykowski, Z., Malujda, R.: Applicability of fuzzy logic to the COLREG rules interpretation. Zeszyty Naukowe/Akademia Morska w Szczecinie, pp. 109–114 (2012)Google Scholar
  8. 8.
    Praczyk, T.: Neural anti-collision system for autonomous surface vehicle. Neurocomputing 149, 559–572 (2015)CrossRefGoogle Scholar
  9. 9.
    Statheros, T., Howells, G., Maier, K.M.D.: Autonomous ship collision avoidance navigation concepts, technologies and techniques. J. Navig. 61(1), 129–142 (2008)CrossRefGoogle Scholar
  10. 10.
    Sutulo, S., Moreira, L., Soares, C.G.: Mathematical models for ship path prediction in manoeuvring simulation systems. Ocean Eng. 29(1), 1–19 (2002)CrossRefGoogle Scholar
  11. 11.
    Tsou, M.-C., Hsueh, C.-K.: The study of ship collision avoidance route planning by ant colony algorithm. J. Mar. Sci. Technol. 18(5), 746–756 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rongjie Yan
    • 1
  • Xiangtong Yao
    • 2
  • Junjie Yang
    • 2
  • Kai Huang
    • 2
  1. 1.State Key Laboratory of Computer ScienceISCASBeijingChina
  2. 2.School of Data and Computer ScienceSun Yat-sen UniversityGuangzhouChina

Personalised recommendations