On the Soft Real-Time Scheduling of Parallel Tasks on Multiprocessors

  • Xu Jiang
  • Xiang LongEmail author
  • Tao Yang
  • Qingxu Deng
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 857)


Recently, parallel task models have received more attentions as the prevalence of multiprocessors. The general purpose by using such parallel programming models is to guarantee bounded response time with minimal resource. Unfortunately, most previous work focus on hard real time problem while could not providing such performance guarantees. In this paper, we address the soft real-time scheduling problem under a general DAG (Directed Acyclic Graph) task model and present conditions where each parallel application with arbitrary deadline can achieve a bounded response time by using federated scheduling algorithm. To the best of our knowledge, this is the first time to consider the soft real-time scheduling under general DAG task model on multiprocessors.


Soft real-time Parallel Scheduling 


  1. 1.
    Andersson, B., de Niz, D.: Analyzing global-EDF for multiprocessor scheduling of parallel tasks. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 16–30. Springer, Heidelberg (2012). Scholar
  2. 2.
    Baruah, S.: Techniques for multiprocessor global schedulability analysis. In: RTSS (2007)Google Scholar
  3. 3.
    Baruah, S., Fisher, N.: The partitioned multiprocessor scheduling of sporadic task systems. In: RTSS (2005)Google Scholar
  4. 4.
    Baruah, S.: The federated scheduling of constrained-deadline sporadic DAG task systems. In: DATE (2015)Google Scholar
  5. 5.
    Baruah, S.: Federated scheduling of sporadic DAG task systems. In: IPDPS (2015)Google Scholar
  6. 6.
    Baruah, S.: The federated scheduling of systems of conditional sporadic DAG tasks. In: EMSOFT (2015)Google Scholar
  7. 7.
    Baruah, S.: Improved multiprocessor global schedulability analysis of sporadic DAG task systems. In: ECRTS (2014)Google Scholar
  8. 8.
    Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., Wiese, A.: A generalized parallel task model for recurrent real-time processes. In: RTSS (2012)Google Scholar
  9. 9.
    Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., Wiese, A.: Feasibility analysis in the sporadic DAG task model. In: ECRTS (2013)Google Scholar
  10. 10.
    Devi, U.C., Anderson, J.H.: Tardiness bounds under global EDF scheduling on a multiprocessor. In: IEEE International Real-Time Systems Symposium, RTSS 2005, pp. 330–341 (2008). 12 pagesGoogle Scholar
  11. 11.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416–429 (1969)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jiang, X., Long, X., Guan, N., Wan, H.: On the decomposition-based global EDF scheduling of parallel real-time tasks. In: RTSS (2016)Google Scholar
  13. 13.
    Kato, S., Ishikawa, Y.: Gang EDF scheduling of parallel task systems. In: RTSS (2009)Google Scholar
  14. 14.
    Kim, J., Kim, H., Lakshmanan, K., Rajkumar, R.R.: Parallel scheduling for cyber-physical systems: analysis and case study on a self-driving car. In: ICCPS (2013)Google Scholar
  15. 15.
    Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling parallel real-time tasks on multi-core processors. In: RTSS (2010)Google Scholar
  16. 16.
    Lee, W.Y., Heejo, L.: Optimal scheduling for real-time parallel tasks. IEICE Trans. Inf. Syst. 89, 1962–1966 (2006)CrossRefGoogle Scholar
  17. 17.
    Leontyev, H., Anderson, J.H.: Tardiness bounds for FIFO scheduling on multiprocessors. In: Euromicro Conference on Real-Time Systems, ECRTS 2007, p. 71 (2007)Google Scholar
  18. 18.
    Li, J., Dinh, S., Kieselbach, K., Agrawal, K., Gill, C., Lu, C.: Randomized work stealing for large scale soft real-time systems. In: RTSS (2016)Google Scholar
  19. 19.
    Li, J., Agrawal, K., Lu, C., Gill, C.: Outstanding paper award: analysis of global EDF for parallel tasks. In: ECRTS (2013)Google Scholar
  20. 20.
    Li, J., Chen, J.J., Agrawal, K., Lu, C., Gill, C., Saifullah, A.: Analysis of federated and global scheduling for parallel real-time tasks. In: ECRTS (2014)Google Scholar
  21. 21.
    Liu, C., Anderson, J.H.: Supporting soft real-time DAG-based systems on multiprocessors with no utilization loss, vol. 41, no. 3, pp. 3–13 (2010)Google Scholar
  22. 22.
    Maia, C., Bertogna, M., Nogueira, L., Pinho, L.M.: Response-time analysis of synchronous parallel tasks in multiprocessor systems. In: RTNS (2014)Google Scholar
  23. 23.
    Manimaran, G., Murthy, C.S.R., Ramamritham, K.: A new approach for scheduling of parallelizable tasks in real-time multiprocessor systems. Real Time Syst. 15, 39–60 (1998)CrossRefGoogle Scholar
  24. 24.
    Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo, G.C.: Response-time analysis of conditional DAG tasks in multiprocessor systems. In: ECRTS (2015)Google Scholar
  25. 25.
    Nelissen, G., Berten, V., Goossens, J., Milojevic, D.: Techniques optimizing the number of processors to schedule multi-threaded tasks. In: ECRTS (2012)Google Scholar
  26. 26.
    Parri, A., Biondi, A., Marinoni, M.: Response time analysis for G-EDF and G-DM scheduling of sporadic DAG-tasks with arbitrary deadline. In: RTNS (2015)Google Scholar
  27. 27.
    Qamhieh, M., Fauberteau, F., George, L., Midonnet, S.: Global EDF scheduling of directed acyclic graphs on multiprocessor systems. In: RTNS (2013)Google Scholar
  28. 28.
    Qamhieh, M., George, L., Midonnet, S.: A stretching algorithm for parallel real-time DAG tasks on multiprocessor systems. In: RTNS (2014)Google Scholar
  29. 29.
    Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., Gill, C.D.: Parallel real-time scheduling of DAGs. IEEE Trans. Parallel Distrib. Syst. 25, 3242–3252 (2014)CrossRefGoogle Scholar
  30. 30.
    Saifullah, A., Li, J., Agrawal, K., Lu, C., Gill, C.: Multi-core real-time scheduling for generalized parallel task models. Real Time Syst. 49, 404–435 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Beihang UniversityBeijingChina
  2. 2.Northeastern UniversityShenyangChina

Personalised recommendations