Advertisement

Growth Models for Repeated Measurement Mixture Experiments: Optimal Designs for Parameter Estimation and Growth Prediction

  • Manisha Pal
  • Nripes K. Mandal
  • Bikas K. SinhaEmail author
Conference paper

Abstract

The present study focuses on the problems of parameter estimation and growth prediction in a quadratic growth model based on repeated measurements of growth, where the parameters in the model are assumed to be functions of ‘treatments’ which are treated as mixtures. The study concentrates not only on the optimality aspects of designs for most efficient estimation of the parameters but also on optimal prediction of growth at designated time points.

Keywords

D- and A-optimal designs Mixtures Parameter estimation Prediction Quadratic growth model Repeated measurements 

Notes

Acknowledgements

The authors thank the anonymous referees for their fruitful comments. Much of the final shape of the manuscript rested on their insightful and helpful suggestions and recommendations towards better presentation of our ideas.

References

  1. Abt, M., Liski, E. P., Mandal, N. K., & Sinha, B. K. (1997). Optimal design in growth curve models: Part I. Correlated model for linear growth: Optimal designs for slope parameter estimation and growth prediction. Journal of Statistical Planning and Inference, 64, 141–150.MathSciNetCrossRefGoogle Scholar
  2. Abt, M., Gaffke, N., Liski, E. P., & Sinha, B. K. (1998). Optimal designs for growth curve models: Part II. Correlated model for quadratic growth: Optimal designs for slope parameters and growth prediction. Journal of Statistical Planning and Inference, 67, 287–296.MathSciNetCrossRefGoogle Scholar
  3. Afsarinejad, K. (1990). Repeated measurements designs—a review. Communication in Statistics—Theory and Methods, 19, 3985–4028.MathSciNetCrossRefGoogle Scholar
  4. Box, G. E. P. (1950). Problem in the analysis of growth and wear curves. Biometrics, 6, 362–389.CrossRefGoogle Scholar
  5. de la Garza, A. (1954). Spacing of information in polynomial regression. The Annals of Mathematical Statistics, 25, 123–130.MathSciNetCrossRefGoogle Scholar
  6. Galil, Z., & Kiefer, J. (1977). Comparison of simplex designs for quadratic mixture models. Technometrics, 19, 445–453.MathSciNetCrossRefGoogle Scholar
  7. Kiefer, J. (1974). General equivalence theory for optimal designs. The Annals of Statistics, 2, 849–879.MathSciNetCrossRefGoogle Scholar
  8. Potthoff, R. F., & Roy, S. N. (1964). Generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51, 313–326.MathSciNetCrossRefGoogle Scholar
  9. Rao, C. R. (1958). Comparison of growth curves. Biometrics, 14, 1–16.CrossRefGoogle Scholar
  10. Rao, C. R. (1965). Theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika, 52, 447–458.MathSciNetCrossRefGoogle Scholar
  11. Scheffé, H. (1958). Experiments with mixtures. Journal of Royal Statistical Society, Series B, 20, 344–360.MathSciNetzbMATHGoogle Scholar
  12. Sen, P. K. (2013). Some statistical perspectives of growth curve models in health care plans. In R. Dasgupta (Ed.), Advances in growth curve models (Vol. 46, pp. 35–48).New York: Springer Proceedings in Mathematics & Statistics.Google Scholar
  13. Shah, K. R., & Sinha, B. K. (1989) Theory of optimal designs. Berlin: Springer.CrossRefGoogle Scholar
  14. Sinha, B. K., Mandal, N. K., Pal, M., & Das, P. (2014). Optimal mixture experiments (Vol. 1028). Springer-Verlag Lecture Notes in Statistics.Google Scholar
  15. Von Rosen, D. (1991). The growth curve model—a review. Communication in Statistics—Theory and Methods, 20(9), 2791–2822.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Manisha Pal
    • 1
  • Nripes K. Mandal
    • 1
  • Bikas K. Sinha
    • 2
    Email author
  1. 1.Calcutta UniversityKolkataIndia
  2. 2.Indian Statistical InstituteKolkataIndia

Personalised recommendations