Advertisement

Multi-, Hyper-Spectral Biometrics Modalities

  • Mohsen ArdabilianEmail author
  • Abdel-Malek Zine
  • Shiwei Li
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

In this chapter, it will be introduced the different categories of multi-hyper-spectral imaging approaches for biometric modalities. Afterwards, indirect approach will be considered, namely: prerequisites concepts on physics and computer graphics, physical theory for the light-skin interaction models and finally the related applications of multi-hyper-spectral imaging.

References

  1. 1.
    Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)CrossRefGoogle Scholar
  2. 2.
    Hagen, N., Kudenov, M.W.: Review of snapshot spectral imaging technologies. Opt. Eng. 52(9), 090901 (2013)CrossRefGoogle Scholar
  3. 3.
    Gat, N.: Imaging spectroscopy using tunable filters: a review. Proc. SPIE 4056, 50–64 (2000)CrossRefGoogle Scholar
  4. 4.
    Lyot, B.: Optical apparatus with wide field using interference of polarized light. C. R. Acad. Sci. (Paris) 197, 1593 (1933)Google Scholar
  5. 5.
    Šolc, I.: Birefringent chain filters. J. Opt. Soc. Am. 55(6), 621–625 (1965)CrossRefGoogle Scholar
  6. 6.
    Shriyan, S.K.: Tunable electro-optic thin film stack for hyperspectral imaging. Ph.D. Thesis, Drexel University (2011)Google Scholar
  7. 7.
    Shriyan, S.K., Schundler, E., Schwarze, C., Fontecchio, A.K.: Electro-optic polymer liquid crystal thin films for hyperspectral imaging. J. Appl. Remote Sens. 6(1), 063549 (2012)CrossRefGoogle Scholar
  8. 8.
    Golub, M., Menachem, N., Amir, A., Kagan, A., Zheludev, V., Malinsky, R.: Snapshot spectral imaging based on digital cameras. U.S. patent US 20130194481 A1 (2013)Google Scholar
  9. 9.
    Gehm, M.E., John, R., Brady, D.J., Willett, R.M., Schulz, T.J.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14013–14027 (2007)CrossRefGoogle Scholar
  10. 10.
    Golub, M.A., Nathan, M., Averbuch, A., Lavi, E., Zheludev, V.A., Schclar, A.: Spectral multiplexing method for digital snapshot spectral imaging. Appl. Opt. 48(8), 1520–1526 (2009)CrossRefGoogle Scholar
  11. 11.
    Habel, R., Kudenov, M., Wimmer, M.: Practical spectral photography. EUROGRAPHICS 31(2) pt2, 449–458 (2012)CrossRefGoogle Scholar
  12. 12.
    Hegyi, A., Martini, J.: Hyperspectral imaging with a liquid crystal polarization interferometer. Opt. Express 3(22), 28742–28754 (2015)CrossRefGoogle Scholar
  13. 13.
    Baranoski, G.V.G., Krishnaswamy, A.: Light & Skin Interactions, Simulations for Computer Graphics Applications. Morgan Kaufmann (2010)Google Scholar
  14. 14.
    Chandrasekhar, S.: Radiative Transfer. Courier Corporation (2013)Google Scholar
  15. 15.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. SIGGRAPH, 511–518 (2001)Google Scholar
  16. 16.
    Lambert, J.H., Anding, E.: Ostwalds Klassiker der exakten Wissenschaften. Lamberts Photometrie (Photometria, sive De mensura et gradibus luminis, colorum et umbrae) (1760). W. Engelmann, 1892Google Scholar
  17. 17.
    Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18, 311–317 (1975)CrossRefGoogle Scholar
  18. 18.
    Torrance, K.E., Sparrow, E.M.: Off-specular peaks in the directional distribution of reflected thermal radiation. J. Heat Trans. 88, 223–230 (1966)CrossRefGoogle Scholar
  19. 19.
    Sparrow, E.M., Torrance, K.E.: Theory for off-specular reflection from roughened surfaces. JOSA 57, 1105–1112 (1967)Google Scholar
  20. 20.
    Kubelka, P., Munk, F.: Ein beitrag ztlr optik der farbanstriche. Z. Teeh. Phys. 12, 593–601 (193l)Google Scholar
  21. 21.
    Wang, L., Jacques, S.L., Zheng, L.: MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Progr. Biomed. 47, 131–146 (1995)CrossRefGoogle Scholar
  22. 22.
    Wang, L., Jacques, S.L.: Optimized radial and angular positions in Monte Carlo modeling. Med. Phys. 21, 1081–1083 (1994)CrossRefGoogle Scholar
  23. 23.
    Shirley, P.: Nonuniform random point sets via warping. In: Graphics Gems III, pp. 80–83. Academic Press Professional Inc. (1992)Google Scholar
  24. 24.
    Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 1032–1039 (2005)CrossRefGoogle Scholar
  25. 25.
    Akhloufi, M., Bendada, A.: Multispectral infrared face recognition: a comparative study. In: 10th International Conference on Quantitative InfraRed Thermography, pp. 27–30. Québec (Canada) (2010)Google Scholar
  26. 26.
    Click, R., Dahl-Smith, J., Fowler, L., DuBose, J., Deneau-Saxton, M., Herbert, J.: An osteopathic approach to reduction of readmissions for neonatal jaundice. Osteopath. Family Phys. 5, 17–23 (2013)CrossRefGoogle Scholar
  27. 27.
    Arya, V., Grzybowski, J., Schwartz, R.A.: Carotenemia. Cutis 71(6), 441–2, 448 (2003)Google Scholar
  28. 28.
    Pavlova, P., Borisova, E., Petkova, E., Avramov, Troyanova, P.: Investigation of Relations Between Skin Cancer Lesions’ Images and Their Reflectance and Fluorescent Spectra (2011)Google Scholar
  29. 29.
    Pan, Z., et al.: Face recognition in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Huang, D., Shan, C., Ardabilian, M., Wang, Y. Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man. Cybern. Part C (Appl. Rev.) 41, 765–781CrossRefGoogle Scholar
  31. 31.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  32. 32.
    Malskies, C.R., Eibenberger, E., Angelopoulou, E.: The recognition of ethnic groups based on histological skin properties. In: Proceedings of Vision, Modeling, and Visualization, pp. 353–360 (2011)Google Scholar
  33. 33.
    Chen, W., Ardabilian, M., Zahouani, H., Zine, A.: Gender, skin type and age classifications using skin reflectance-based descriptor. Rap. Tech. (2014)Google Scholar
  34. 34.
    Nixon, K.A., Aimale, V., Rowe, R.K.: Spoof detection schemes. In: Handbook of Biometrics. Springer US, Boston, MA, pp. 403–423 (2008)Google Scholar
  35. 35.
    Kim, Y., Na, J., Yoon, S., Yi, J.: Masked fake face detection using radiance measurements. JOSA A (2009)Google Scholar
  36. 36.
    Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. In: Face and Gesture, pp. 436–441(2011)Google Scholar
  37. 37.
    Chen, W., Ardabilian, M., Zin, A., Zahouani, H.: Reflectance spectra based skin and non-skin classification. Proc. ICIP 2015, 755–759 (2015)Google Scholar
  38. 38.
    Ardabilian, M., Zine, M., Chen, W.: Procédé pour distinguer automatiquement une peau d’un être humain d’un leurre inanimé de peau humaine, Patent, WO2017051116A1Google Scholar
  39. 39.
    Vrhel, M.J., Gershon, R., Iwan, L.S.: Measurement and analysis of object reflectance spectra. Color Res. Appl. 19(1), 4–9 (1994)CrossRefGoogle Scholar
  40. 40.
    Hecht, E.: Optics. Addison-Wesley Longman (2002)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mohsen Ardabilian
    • 1
    Email author
  • Abdel-Malek Zine
    • 2
  • Shiwei Li
    • 1
  1. 1.LIRIS Laboratory—UMR 5205 CNRSUniversité de Lyon, Ecole Centrale de LyonLyonFrance
  2. 2.ICJ—UMR 5208 CNRSUniversité de Lyon, Ecole Centrale de LyonLyonFrance

Personalised recommendations