Advertisement

A Review on ECG-Based Biometric Authentication Systems

  • Mohamad O. DiabEmail author
  • Alaa Seif
  • Maher Sabbah
  • Mohamad El-Abed
  • Nijez Aloulou
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

The objectives of this chapter is three-folds: First, it presents an overview of the existing ECG benchmarks used for designing ECG-based authentication systems. Second, it presents the literatures of authentication systems that used fiducial and non-fiducial features. Third, it presents a methodology that uses both fiducial and non-fiducial features and several data mining classification techniques for individuals’ authentication. Moreover this chapter investigates the pertinent features using a large database of healthy and unhealthy subjects with different heart diseases.

References

  1. 1.
    Wahabi, S., Pouryayevali, S., Hari, S., Hatzinakos, D.: On evaluating ECG biometric systems: session-dependence and body posture. IEEE Trans. Inf. Forensics Secur. 11(9), 2002–2013 (2014)CrossRefGoogle Scholar
  2. 2.
    Hassan, Z., Omer Gilani, S., Jamil, M.: Review of fiducial and non-fiducial techniques of feature extraction in ECG based biometric systems. Indian J. Sci. Technol. 9(21), 23–26 (2016)CrossRefGoogle Scholar
  3. 3.
    Human Heart Diagram Labeled. Retrieved from http://www.healthsanaz.com/human-heart-diagram-labeled-hhd10.html
  4. 4.
    Sornmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological Applications, vol. 5, no. 7, pp. 13–15. Academic Press (2005)Google Scholar
  5. 5.
    Potter, L.: Understanding an ECG|Geeky Medics. Retrieved from https://geekymedics.com/understanding-an-ecg/
  6. 6.
    Hoekema, R., Uijen, G.J.H., Van Oosterom, A.: Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Trans. Biomed. Eng 48(51), 551–559 (2001)CrossRefGoogle Scholar
  7. 7.
    Suif, F., Khalil, I., Hu, J.: Ecg-based authentication. Handb. Inf. Commun. Secur. 45(55), 309–331 (2010)Google Scholar
  8. 8.
    Macfarlane, P.W., Lawrie, T.D.V.: The normal electrocardiogram and vectorcardiogram. Compr. Electrocardiol. Theory Pract. Health Dis. 1(1), 407–457 (1989)Google Scholar
  9. 9.
    Biel, L., Pettersson, O., Philipson, L., Wide, V.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum. Measur. 50(3), 808–812CrossRefGoogle Scholar
  10. 10.
    Poroee, F., Kervio, G., Carrault, G.: ECG biometric analysis in different physiological recording conditions. Signal, Image and Video Process. 10(2), 267–276 (2014). Springer VerlagCrossRefGoogle Scholar
  11. 11.
    Jekova, I., Christov, I., Krasteva, V., Bortolan, G., Matveev, M.: Assessment of the potential of morphological ECG features for person identification. Comput. Cardiol. Conf (CinC), 45(5), 26–30 (2015)Google Scholar
  12. 12.
    Trader, J.: Expect to see these new biometric modalities become mainstream. Retrieved from http://www.m2sys.com/blog/biometric-hardware/looking-ahead-new-biometric-modalities-horizon/ (2017)
  13. 13.
    Belgacem, N., Bereksi-Reguig, F., Nait-ali, A.: Person identification system based on electrocardiogram signal using LabVIEW. Int. J. Comput. Sci. Engi. (IJCSE) Person 4(6), 974–981Google Scholar
  14. 14.
    Hassan, Z., Omer Gilani, S., Jamil, M.: Review of fiducial and non-fiducial techniques of feature extraction in ECG based biometric systems. Indian J. Sci. Technol. 9(21), 850–855 (2016)Google Scholar
  15. 15.
    Tiago, A.: Generic biometry algorithm based on signal morphology information: application in the electrocardiogram signal. Adv. Intell. Syst. Comput. 5(53), 301–310 (2014)Google Scholar
  16. 16.
    Wang, Y., Agrafioti, F., Hatzinakos, D., Plataniotis, K.: Analysis of human electrocardiogram for biometric recognition. EURASIP J. Adv. Signal Process. 20(50), 91–95 (2008)Google Scholar
  17. 17.
    Jekov, I., Bortolan, G.: Personal verification/identification via analysis of the peripheral ECG leads: influence of the personal health status on the accuracy. BioMed Res. Int. 215(5), 1–13 (2015)Google Scholar
  18. 18.
    Israela, S., Irvineb, J.: ECG to identify individuals. Pattern Recognit. Soc. 204(5), (23–27)Google Scholar
  19. 19.
    Zhang, Z., Wei, D.: A new ECG identification method using Bayes’ theorem. TENCON IEEE Region 10 Conf. 20(23), 22–25 (2006)Google Scholar
  20. 20.
    Gahi, Y., Lamrani, M., Zoglat, A., Guennoun, M., Kapralos, B., El-Khatib, K.: Biometric identification system based on electrocardiogram data. New Technol. Mobility Secur. 15(20), 56–59 (2008)Google Scholar
  21. 21.
    Singh, Y. Gupta, P.: ECG to individual identification. In: IEEE Second International Conference on Biometrics: Theory, Applications and Systems, vol 8, no. 10, pp. 26–29 (2008)Google Scholar
  22. 22.
    Singh, Y., Gupta, P.: Correlation-based classification of heartbeats for individual identification. Soft. Comput. 15(3), 449–460 (2009)CrossRefGoogle Scholar
  23. 23.
    Jayaraman, S.: Human electrocardiogram for biometrics using DTW and FLDA. 20th Int. Conf. Pattern Recognit. 15(19), 52–55 (2010)Google Scholar
  24. 24.
    Irvine, J., Israel, S.: A sequential procedure for individual identity verification using ECG. EURASIP J. Adv. Signal Process. 209(85), 1–14 (2009)zbMATHGoogle Scholar
  25. 25.
    Kyoso, M., Uchiyama, A.: Development of an ECG identification system. In: Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 23, no. 29, pp. 43–49 (2001)Google Scholar
  26. 26.
    Molina, G., Bruekers, F., Presura, C.: Morphological synthesis of ECG signals for person authentication. Signal Process. Conf. 15(20), 71–73 (2007)Google Scholar
  27. 27.
    Fatemian, S., Hatzinakos, D.: A new ECG feature extractor for biometric recognition. In: 16th International Conference on Digital Signal Processing, vol. 16, no. 22, pp. 93–95 (2009)Google Scholar
  28. 28.
    Sidek, A., Khalil, I., Smolen, M.: ECG Biometric recognition in different physiological conditions using robust normalized QRS complexes. Comput. Cardiol. (CinC), 52(55), 120–123 (2012)Google Scholar
  29. 29.
    Singh, Y., Singh, S.: Evaluation of electrocardiogram for biometric authentication. J. Inf. Secur. 3(1), 39–48 (2012)Google Scholar
  30. 30.
    Tantawi, M., Revett, K., Tolba, A.: A novel feature set for deployment in ECG based biometrics. In: 7th International Conference on Computer Engineering and Systems (ICCES), vol. 7, pp. 186–191 (2012)Google Scholar
  31. 31.
    Coutinho, D.P., Silva, H., Gamboa, H., Fred, A., Figueiredo, M.: Novel fiducial and non-fiducial approaches to electrocardiogram-based biometric systems. IET Biometrics 2(2), 64 (2013)CrossRefGoogle Scholar
  32. 32.
    Vuksanovic, B.: Analysis of human electrocardiogram for biometric recognition using analytic and AR modeling extracted parameters. Int. J. Inf. Electron. Eng. 4(6), 64–66 (2014)Google Scholar
  33. 33.
    Chantaf, S., Nait-ali, A., Karasinski, P., Khalil, M.A.: ECG modelling using wavelet networks: application to biometrics. Int. J. Biometrics (online)  https://doi.org/10.1504/IJBM.2010.033388 (2010)CrossRefGoogle Scholar
  34. 34.
    Fatemian, S.Z., Hatzinakos, D.: A new ECG feature extractor for biometric recognition. 16th Int. Conf. Digital Signal Process. 16(16), 58–59 (2008)Google Scholar
  35. 35.
    Lourenc, A., Silva, H., Fred, A.: Unveiling the biometric potential of finger-based ECG signals. Comput. Intell. Neurosci. 2011(72), 89–91 (2011)Google Scholar
  36. 36.
    Safie, S., Soraghan, J., Petropoulakis, L.: Electrocardiogram (ECG) biometric authentication using pulse active ratio (PAR). Inf. Forensics Secur. IEEE Trans. 6(4), 1315–1322 (2011)CrossRefGoogle Scholar
  37. 37.
    Saechia, S., Koseeyaporn, J., Wardkein, P.: Human identification system based ECG signal. TENCON 2005 IEEE Region 10, 2005(1), 1–4 (2005)Google Scholar
  38. 38.
    Sufi, F., Khalil, I., Habib, I.: Polynomial distance measurement for ECG based biometric authentication. Secur. Commun. Netw. Online 2008(1), 25–28 (2008)Google Scholar
  39. 39.
    Khalil, I., Sufi, F.: Legendre polynomials based biometric authentication using QRS complex of ECG. In: Proceedings of the 4th International Conference on Intelligent Sensors, 4(1), 78–79 (2008)Google Scholar
  40. 40.
    Plataniotis, K.N., Hatzinakos, D., Lee, J.K.M.: ECG biometric recognition without fiducial detection. Proc. Biometric Symp. (BSYM) 2006(15), 23–26 (2006)Google Scholar
  41. 41.
    Li, M., Narayanan, S.: Robust ECG biometrics by fusing temporal and cepstral information. 20th Int. Conf. Pattern Recogn. (ICPR), 20(20), 1326–1329 (2010)Google Scholar
  42. 42.
    Agrafioti, F., Hatzinakos, D.: ECG biometric analysis in cardiac irregularity conditions. SIViP 3(4), 1683–1706 (2008)zbMATHGoogle Scholar
  43. 43.
    Agrafioti, F., Bui, F.M., Hatzinakos, D.: Medical biometrics: the perils of ignoring time dependency. Proc. 3rd IEEE Int. Conf. Biometrics: Theory, Appl. Syst. 3(3), 358–363Google Scholar
  44. 44.
    Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 57(2), 248–253 (2008)CrossRefGoogle Scholar
  45. 45.
    Molina, G.G., Bruekers, F., Presura, C., Damstra, M., Veen, M.: Morphological synthesis of ECG signals for person authentication. Eur. Signal Process. Conf. 2007(5), 56–59 (2007)Google Scholar
  46. 46.
    Wübbeler, G., Stavridis, M., Kreiseler, D., Bousseljot, R., Elster, C.: Verification of humans using the electrocardiogram. Pattern Recogn. Lett. 28(28), 1172–1175 (2007)CrossRefGoogle Scholar
  47. 47.
    Agrafioti F., Hatzinakos, D.: Fusion of ECG sources for human identification. In: The 3rd International Symposium on Communications, Control and Signal Processing (ISCCSP 2008), vol. 3, no. 3, pp. 169–171 (2008)Google Scholar
  48. 48.
    Agrafioti F., Hatzinakos, D.: ECG based recognition using second order statistics. In: Proceedings of the Communication Networks and Services Research Conference 2008, vol. 1, no. 1, pp. 222–224 (2008)Google Scholar
  49. 49.
    Chiu, C.-C, Chuang, C.-M., Hsu, C.-Y.: A novel personal identity verification approach using a discrete wavelet transform of the ECG signal. In: The 2nd International Conference on Multimedia and Ubiquitous Engineering, vol. 2, no. 2, pp. 296–299 (2008)Google Scholar
  50. 50.
    Wan, Y., Yao, J.: A neural network to identify human subjects with electrocardiogram signals. Proc. World Congr. Eng. Comput. Sci. 1(1), 380–382 (2008)Google Scholar
  51. 51.
    Yao, J., Wan, Y.: A wavelet method for biometric identification using wearable ECG sensors. In: Proceedings of the 5th International Workshop on Wearable and Implantable Body Sensor Networks, vol. 5, no. 5, pp. 185–188 (2008)Google Scholar
  52. 52.
    Boumbarov, O., Velchev, Y., Sokolov, S.: ECG personal identification in subspaces using radial basis neural networks. In: IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, vol. 1, no. 1, pp. 446–451 (2009)Google Scholar
  53. 53.
    Fang, S.-C., Chan, H.-L.: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space. Pattern Recogn. 42(42), 1824–1831 (2009)CrossRefGoogle Scholar
  54. 54.
    Homer, M., Irvine, J., Wendelken, S.: A model-based approach to human identification using ECG. Proc. SPIE 7306, 45–48 (2009)Google Scholar
  55. 55.
    Agrafioti, F., Hatzinakos, D.: IEEE international conference on signal validation for cardiac biometrics. Acoust. Speech and Signal Proc. (ICASSP) 2010, 1734–1737 (2010)Google Scholar
  56. 56.
    Coutinho, D.P., Fred, A.L.N., Figueiredo, M.A.T.: One-lead ECG-based personal identification using Ziv-Merhav cross parsing. In: 20th International Conference on Pattern Recognition (ICPR), vol. 20, no. 20, pp. 3858–3861 (2010)Google Scholar
  57. 57.
    Jang, D., Wendelken, S., Irvine, J.M.: Robust human identification using ECG: Eigenpulse revisited. Proc. SPIE 7667(8898), 196–200 (2010)Google Scholar
  58. 58.
    Loong, J.L.C., Subari, K.S., Besar, R., Abdullah, M.K.: A new approach to ECG biometric systems: a comparative study between LPC and WPD systems. World Acad. Sci., Eng. Technol. 251(333), 759–764 (2010)Google Scholar
  59. 59.
    Ye, C., Coimbra, M., Kumar, B.: Investigation of human identification using two-lead electrocardiogram ECG signals. Fourth IEEE Int. Conf. Biometrics: Theory Appl. Syst. (BTAS) 4(4), 1–8 (2010)Google Scholar
  60. 60.
    Tawfik, M.M., Kamal, H.S.T.: Human identification using QT signal and QRS complex of the ECG. Online J. Electron. Electr. Eng. (OJEEE) 3(1), 383–387 (2011)Google Scholar
  61. 61.
    Pan, J., Tompkins, W.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)CrossRefGoogle Scholar
  62. 62.
    Tantawi, M., Revett, K., Salem, A., Tolba, M.: A wavelet feature extraction method for electrocardiogram (ECG)-based biometric recognition. SIViP 9(6), 1271–1280 (2013)CrossRefGoogle Scholar
  63. 63.
  64. 64.
    Alwan, S., Alabed, M., Zantot, R.: Vehicle recognition from partial images 50–59 (2017)Google Scholar
  65. 65.
    Mitchell, T.: Machine learning. New York, NY: McGraw-Hill (1997)Google Scholar
  66. 66.
    Principe, J., Euliano, N., Lefebvre, W.: Neural and adaptive systems. 591–600 (2000)Google Scholar
  67. 67.
    Data Mining: Practical Machine Learning Tools and Techniques. Retrieved from http://www.cs.waikato.ac.nz/ml/weka/book.html

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mohamad O. Diab
    • 1
    Email author
  • Alaa Seif
    • 1
  • Maher Sabbah
    • 1
  • Mohamad El-Abed
    • 1
  • Nijez Aloulou
    • 2
  1. 1.Rafik Hariri UniversityDamour—ChoufLebanon
  2. 2.Faculty of SciencesLebanese UniversityHadathLebanon

Personalised recommendations