Advertisement

Retinal Image Processing in Biometrics

  • Rostom KachouriEmail author
  • Mohamed Akil
  • Yaroub Elloumi
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

In this chapter, retinal image processing will be addressed as a Hidden Biometric modality. Considered as safe modalities, the retinal vascular network provide a unique pattern for each individual since it does not change throughout the life of the person. In addition, the retina offers a high level of recognition, which makes it suitable for high security applications thanks to its universality, its invariability over time and its difficulty to falsify.

References

  1. 1.
    Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 1(3), 169–208.  https://doi.org/10.1109/rbme.2010.2084567 (2010)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K., Bolle, R., Pankanti, S.: Biometrics: personal identification in networked society. Springer Science & Business Media (1999)Google Scholar
  3. 3.
    Simon, C., Goldstein, I.: A new scientific method of identification. New York State J. Med. 35, 901–906 (1935)Google Scholar
  4. 4.
    Manivannan, A., Kirkpatrick, J.N.P., Sharp, P.F., Forrester, J.V.: Novel approach towards coulour imaging using scanning laser ophthalmoscope. Br. J. Ophthalmol. 82(4), 342–345 (1998).  https://doi.org/10.1135/bjo.82.4.342CrossRefGoogle Scholar
  5. 5.
    Hermann, B., Fernandez, E.J., Unterhubner, A., Sattmann, H., Fercher, A.F., Drexler, W., Prieto, P.M., Artal, P.: Adaptative-optics ultrahigh-resolution optical tomography. Opt. Lett. 29, 2142–2144 (2004)CrossRefGoogle Scholar
  6. 6.
    DelHoog, E., Schwiegerling, J.: Fundus camera systems: a comparative analysis. Appl. Opt. 48(2), 221–228 (2009)CrossRefGoogle Scholar
  7. 7.
    Srinivasan, V.J., Huber, R., Gorczynska, I., Fujimoto, J.G.: High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swep laser at 850 nm. Opt. Lett. 32(4) (2007)CrossRefGoogle Scholar
  8. 8.
    Ma, C., Cheng, D., Xu, C., Wang, Y.: Design, simulation and experimental analysis of an anti-stray-light illumination system of fundus camera. In: Proceedings of SPIE—The International Society for Optical Engineering (2014)Google Scholar
  9. 9.
    Soliman, A.Z., Silva, P.S., Aiello, L.P., Sun, J.K.: Ultra-wide field retinal imaging in detection, classification, and management of diabetic retinopathy. Semin. Ophthalmol. 27(5–6), 221–227 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhi, Zhongwei, Cepurna, William O., Johnson, Elaine C., Morrison, John C., Wang, Ruikang K.: Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography. Biomed. Opt. Express 3(9), 2220–2233 (2012)CrossRefGoogle Scholar
  11. 11.
    Bernardes, R., Serranho, P., Lobo, C.: Digital ocular fundus imaging: a review. Ophthalmologica 226, 161–181 (2011).  https://doi.org/10.1159/000329597. Published online: 22 Sept 2011CrossRefGoogle Scholar
  12. 12.
    Panwar, N., Lee, J., Chuan, T.S., Teoh, S., Huang, P., Keane, P.A., Richhariya, A., Lim, T.H., Agrawal, R.: Fundus photography in the 21st century—a review of recent technological advances and their implications for worldwide healthcare. Telemed. e-Health.  https://doi.org/10.1089/tmj.2015.0068 (2015)CrossRefGoogle Scholar
  13. 13.
    Russo, A., Delcassi, L., Morescalchi, F., Semeraro, F., Costagliola, C.: A novel device to exploit the smartphone camera for fundus photography. J. Ophthalmol (823139), 5 p. http://dx.doi.org/10.1155/2015/823139 (2015)
  14. 14.
    Russo, A., Morescalchi, F., Costagliola, C., Delcassi, L., Semeraro, F.: A Novel Device to Exploit the Smartphone Camera for Fundus PhotographyGoogle Scholar
  15. 15.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., et al.: Blood vessel segmentation methodologies in retinal images: a survey. Comput. Methods Programs Biomed. 108, 407–433 (2012)CrossRefGoogle Scholar
  16. 16.
    Fukuta, K., Nakagawa, T., Hayashi, Y., Hatanaka, Y., Hara, Y., Fujita, H.: Personal identification based on blood vessels of retinal fundus images. Medical Imaging 2008, Image Processing, Proceedings. of SPIE Vol. 6914, pp 1605–7422/08/$18 (2008).  https://doi.org/10.1117/12.769330
  17. 17.
    Wang, L., Wong, T.Y., Sharrett, A.R., Klein, R., Folsom, A.R., Jerosch-Herold, M.: Relationship between retinal arteriolar narrowing and myocardial perfusion: multi-ethnic study of atherosclerosis. Hypertension 51, 119–126 (2008).  https://doi.org/10.1161/HYPERTENSIONAHA.107.09834CrossRefGoogle Scholar
  18. 18.
    Dehghani, A., Ghassabi, Z., Moghddam, H.A., Moin, M.S.: Human recognition based on retinal images and using new similarity function. EURASIP J. Image Video Process. 2013, 58 (2013)Google Scholar
  19. 19.
    Ortega, M., Marino, C., Penedo, M.G., Blanco, M., Gonzalez, F.: Biometric authentication using digital retinal images. In: Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16–18, pp. 422–427 (2006)Google Scholar
  20. 20.
    Modarresi, M., Oveisi, I.S., Janbozorgi, M.: Retinal identification using shearlets feature extraction. Austin Biometr. Biostat. 4(1), id1035 (2017)Google Scholar
  21. 21.
    Singh, Anushikha, Dutta, Malay Kishore, Sharma, Dilip Kumar: Unique identification code for medical fundus images using blood vessel pattern for tele-ophthalmology applications. Comput. Methods Programs Biomed. 135, 161–175 (2016)CrossRefGoogle Scholar
  22. 22.
    Roy, N.D., Biswas, A.: Detection of bifurcation angles in a retinal fundus image. In: 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR) (2015)Google Scholar
  23. 23.
    Barkhoda, W., Akhlaqian, F., Amiri, M.D., Nouroozzadeh, M.S.: Retina identification based on the pattern of blood vessels using fuzzy logic. EURASIP J. Adv. Signal Process. 2011, 113 (2011)Google Scholar
  24. 24.
    Fatima, J., Syed, A.M., Usman Akram, M.: Feature point validation for improved retina recognition. In: 2013 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Naples, Italy, 9–9 Sept 2013Google Scholar
  25. 25.
    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26, 1357–1365 (2007)CrossRefGoogle Scholar
  26. 26.
    Marin, D., Aquino, A., Gegndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)CrossRefGoogle Scholar
  27. 27.
    Alonso-Montes, C., Vilarino, D.L., Penedo, M.G.: CNN-Based Automatic Retinal Vascular Tree Extraction. IEEE, pp. 61–64 (2010)Google Scholar
  28. 28.
    Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10, 1010–1019 (2001)CrossRefGoogle Scholar
  29. 29.
    Balakrishnan, U.: NDC-IVM: an automatic segmentation of optic disc and cup region from medical images for glaucoma detection. J. Innov. Opt. Health Sci. 10(03), 1750007 (2017)CrossRefGoogle Scholar
  30. 30.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rostom Kachouri
    • 1
    Email author
  • Mohamed Akil
    • 1
  • Yaroub Elloumi
    • 1
    • 2
    • 3
  1. 1.Gaspard Monge Computer Science LaboratoryESIEE-Paris, University Paris-EstMarne-la-ValléeFrance
  2. 2.Medical Technology and Image Processing Laboratory, Faculty of MedicineUniversity of MonastirMonastirTunisia
  3. 3.ISITCom Hammam-Sousse, University of SousseSousseTunisia

Personalised recommendations