Advertisement

Alpha Synuclein and Parkinson’s Disease

  • Arti Parihar
  • Priyanka Parihar
  • Isha Solanki
  • Mordhwaj S. PariharEmail author
Chapter

Abstract

α-Synuclein predominantly expressed in the brain is a small acidic protein containing three domains namely N-terminal lipid-binding α-helix, amyloid-binding central domain (NAC), and C-terminal acidic tail. The physiological functions of this protein remain poorly understood. α-Synuclein localizes specifically to the nerve terminal and has been extensively described to take active task in the regulation of release of neurotransmitter at the presynapse in brain. Accumulating evidence suggests that prefibrillar species, and aggregated form of α-synuclein, are accountable for the pathogenicity of Parkinson’s disease (PD). Larger oligomers of α-synuclein exhibited to impair many functions of neuronal cells including: impairment of synaptic functions, impairment of the mitochondrial and the endoplasmic reticulum functions, and the impairment of protein degradation pathways. Oligomers/protofibrils once accumulated inside or outside cells may cause a lethal effect on the synapse, which may cause disruption of the neurotransmission. The oligomeric α-synuclein species has also the property of spreading between neuronal cells, either as drifting proteins or via extracellular vesicles, and thus spreading the toxic effects in different parts of the brain. Although several mutations in α-synuclein gene have been known that causes familial PD in human, the mechanisms that elevate the accumulation and aggregation of α-synuclein protein are not well addressed. Considering of the mechanism of aggregation of α-synuclein protein and targeting the toxic functions of this protein in brain cells including dysregulated mitochondrial functions may lead to novel therapeutic approaches in Parkinson’s disease.

Keywords

α-Synuclein α-Synucleinopathies Parkinson’s disease Neurodegenerative disorder 

References

  1. 1.
    Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.CrossRefGoogle Scholar
  2. 2.
    Lewy FH. Paralysis agitans. I Pathologische anatomie. In: Lewandowsky M, editor. Handbuch der neurologie. Berlin: Springer; 1912. p. 920–33.Google Scholar
  3. 3.
    Tanaka M, Kim YM, Lee G, et al. Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem. 2004;279:4625–31.CrossRefGoogle Scholar
  4. 4.
    Vargas KJ, Makani S, Davis T, et al. Synucleins regulate the kinetics of synaptic vesicle endocytosis. J Neurosci. 2014;34:9364–76.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rosborough K, Patel N, Kalia LV. α-Synuclein and Parkinsonism: updates and future perspectives. Curr Neurol Neurosci Rep. 2017;17(4):31.CrossRefGoogle Scholar
  6. 6.
    Krüger R, Kuhn W, Müller T, et al. Ala 30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–8.CrossRefGoogle Scholar
  7. 7.
    Zarranz JJ, Alegre J, Gómez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164–73.CrossRefGoogle Scholar
  8. 8.
    Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lavedan C. The synuclein family. Genome Res. 1998;8:871–80.CrossRefGoogle Scholar
  10. 10.
    Clayton DF, George JM. Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res. 1999;58:120–9.CrossRefGoogle Scholar
  11. 11.
    El-Agnaf OM, Salem SA, Paleologou KE, et al. α-Synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J. 2003;17:1945–7.CrossRefGoogle Scholar
  12. 12.
    Tokuda T, Qureshi MM, Ardah MT, et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology. 2010;75:1766–72.CrossRefGoogle Scholar
  13. 13.
    Clayton DF, George JM. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 1998;21:249–54.CrossRefGoogle Scholar
  14. 14.
    Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci. 2001;2:492–501.CrossRefGoogle Scholar
  15. 15.
    Burre J, Vivona S, Diao J, et al. Properties of native brain alpha-synuclein. Nature. 2013;498:E4–6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chinta SJ, Mallajosyula JK, Rane A, et al. Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett. 2010;486:235–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li J-Y, Elisabet E, Holton JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14:501–3.CrossRefGoogle Scholar
  18. 18.
    Christian H, Elodie A, Ann-Louise B, et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest. 2011;121:715–25.CrossRefGoogle Scholar
  19. 19.
    Fauvet B, Mbefo MK, Fares MB, et al. Alpha-synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem. 2012;287:15345–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jakes R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994;345:27–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Dehay B, Bourdenx M, Gorry P, et al. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol. 2015;14:855–66.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Giasson BI, Murray IVJ, Trojanowski JQ, et al. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem. 2001;276:2380–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Reish HEA, Standaert DG. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J Parkinsons Dis. 2015;5:1–19.Google Scholar
  24. 24.
    Kostas V, Maria X, Evangelia E, et al. Pathological roles of α-synuclein in neurological disorders. Lancet Neurol. 2011;10:1015–25.CrossRefGoogle Scholar
  25. 25.
    Jenco JM, Rawlingson A, Daniels B, et al. Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry. 1998;37:4901–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239–52.CrossRefGoogle Scholar
  27. 27.
    Chandra S, Gallardo G, Fernandez-Chacon R, et al. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell. 2005;123:383–96.CrossRefGoogle Scholar
  28. 28.
    Martin LJ, Pan Y, Price AC, et al. Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26:41–50.CrossRefGoogle Scholar
  29. 29.
    Kamp F, Exner N, Lutz AK, et al. Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 2010;29:3571–89.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cooper AA, Gitler AD, Cashikar A, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006;313:324–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Thayanidhi N, Helm JR, Nycz DC, et al. Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell. 2010;21:1850–63.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Martinez-Vicente M, Vila M. Alpha-synuclein and protein degradation pathways in Parkinson’s disease: a pathological feed-back loop. Exp Neurol. 2013;247:308–13.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.CrossRefGoogle Scholar
  34. 34.
    Borghi R, Marchese R, Negro A, et al. Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci Lett. 2000;287:65–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sung JY, Park SM, Lee CH, et al. Proteolytic cleavage of extracellular secreted {alpha}-synuclein via matrix metalloproteinases. J Biol Chem. 2005;280:25216–24.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Danzer KM, Ruf WP, Putcha P, et al. Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J. 2011;25:326–36.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sung JY, Kim J, Paik SR, et al. Induction of neuronal cell death by Rab5A-dependent endocytosis of alpha-synuclein. J Biol Chem. 2001;276:27441–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Luk KC, Song C, O’Brien P, et al. Exogenous alpha-synuclein fibrils seed the formation of lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A. 2009;106:20051–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nonaka T, Watanabe ST, Iwatsubo T, et al. Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem. 2010;285:34885–98.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Auluck PK, Caraveo G, Lindquist S. Alpha-synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol. 2010;26:211–33.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Desplats P, Lee HJ, Bae EJ, et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A. 2009;106:13010–5.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hansen C, Angot E, Bergstrom AL, et al. Alpha-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest. 2011;121:715–25.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kordower JH, Dodiya HB, Kordower AM, et al. Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat. Neurobiol Dis. 2011;43:552–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8:2804–15.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Withers GS, George JM, Banker GA, et al. Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Res Dev Brain Res. 1997;99:87–94.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bendor JT, Logan TP, Edwards RH. The function of alpha-synuclein. Neuron. 2013;79:1044–66.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Burre J, Sharma M, Tsetsenis T, et al. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329:1663–7.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schoch S, Deák F, Konigstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science. 2001;294:1117–22.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Südhof TC, Rizo J. Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol. 2011;3:a005637.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Diao J, Burré J, Vivona S, et al. Native alpha-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. elife. 2013;2:e00592.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006;15:3012–23.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Liu X, Cheng R, Verbitsky M, et al. Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med Genet. 2011;12:104.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gonçalves S, Outeiro TF. Assessing the subcellular dynamics of alpha-synuclein using photoactivation microscopy. Mol Neurobiol. 2013;47:1081–92.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Desplats P, Spencer B, Crews L, et al. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J Biol Chem. 2012;287:31691–702.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Siddiqui A, Chinta SJ, Mallajosyula JK, et al. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson’s disease. Free Radic Biol Med. 2012;53:993–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Jin H, Kanthasamy A, Ghosh A, et al. Alpha-synuclein negatively regulates protein kinase Cdelta expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci. 2011;31:2035–51.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 2000;40:617–47.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sharma SK, Chorell E, Steneberg P, et al. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci Rep. 2015;5:12531.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Park SM, Jung HY, Kim TD, et al. Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of α-synuclein, a molecular chaperone. Biol Chem. 2002;277:28512–20.CrossRefGoogle Scholar
  60. 60.
    Zhu M, Qin ZJ, Hu D, et al. Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry. 2006;45:8135–42.CrossRefGoogle Scholar
  61. 61.
    Latchoumycandane C, Anantharam V, Kitazawa M, et al. Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther. 2005;313:46–55.CrossRefGoogle Scholar
  62. 62.
    Peng X, Tehranian R, Dietrich P, et al. Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci. 2005;118:3523–30.CrossRefGoogle Scholar
  63. 63.
    Radivojac P, Iakoucheva LM, Oldfield CJ, et al. Intrinsic disorder and functional proteomics. Biophys J. 2007;92:1439–56.CrossRefGoogle Scholar
  64. 64.
    Bertoncini CW, Jung YS, Fernandez CO, et al. Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci U S A. 2005;102:1430–5.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Parihar MS, Parihar A, Fujita M, et al. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. 2008;65:1272–84.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Parihar MS, Parihar A, Fujita M, et al. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol. 2009;41:2015–24.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4:1318–20.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Li J, Uversky VN, Anthony L. Fink effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein. Biochemistry. 2001;40:11604–13.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Greenbaum EA, Graves CL, Mishizen-Eberz AJ, et al. The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem. 2005;280:7800–7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Burre J, Sharma M, Südhof TC. Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities. J Neurosci. 2012;32:15227–42.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ghosh D, Mondal M, Mohite GM, et al. The Parkinson’s disease-associated H50Q mutation accelerates α-synuclein aggregation in vitro. Biochemistry. 2013;52:6925–7.CrossRefGoogle Scholar
  72. 72.
    Lazaro DF, Rodrigues EF, Langohr R, et al. Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet. 2014;10:e1004741.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rutherford NJ, Moore BD, Golde TE, et al. Divergent effects of the H50Q and G51D SNCA mutations on the aggregation of α-synuclein. J Neurochem. 2014;131:859–67.CrossRefGoogle Scholar
  74. 74.
    Sharon R, Bar-Joseph I, Mirick GE, et al. Altered fatty acid composition of dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. J Biol Chem. 2003;278:49874–81.CrossRefGoogle Scholar
  75. 75.
    Paleologou KE, Kragh CL, Mann DM, et al. Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain. 2009;132:1093–101.CrossRefGoogle Scholar
  76. 76.
    Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain. 2015;138:1642–57.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Karpinar DP, Balija MB, Kügler S, et al. Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. EMBO J. 2009;28:3256–68.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Winner B, Jappelli R, Maji SK, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011;108:4194–9.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Rockenstein E, Nuber S, Overk CR, et al. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain. 2014;137:1496–513.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–53.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Masuda-Suzukake M, Nonaka T, Hosokawa M, et al. Prion-like spreading of pathological α-synuclein in brain. Brain. 2013;136:1128–38.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Recasens A, Dehay B. Alpha-synuclein spreading in Parkinson’s disease. Front Neuroanat. 2014;8:159.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Simon-Sanchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lashuel HA, Overk CR, Oueslati A, et al. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14:38–48.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Chandra S, Fornai F, Kwon HB, et al. Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A. 2004;101:14966–71.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Luk KC, Kehm VM, Zhang B, et al. Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 2012;209:975–86.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Brundin P, Li JY, Holton JL, et al. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9:741–5.CrossRefGoogle Scholar
  88. 88.
    Christine K, Ana W. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a008888.Google Scholar
  89. 89.
    Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66:646–61.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Chesselet MF, Richter F. Modelling of Parkinson’s disease in mice. Lancet Neurol. 2011;10:1108–18.CrossRefGoogle Scholar
  91. 91.
    Fujiwara H, Hasegawa M, Dohmae N, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.CrossRefGoogle Scholar
  92. 92.
    Danzer KM, Haasen D, Karow AR, et al. Different species of alpha synuclein oligomers induce calcium influx and seeding. J Neurosci. 2007;27:9220–32.CrossRefGoogle Scholar
  93. 93.
    Choi BK, Choi MG, Kim JY, et al. Large alpha-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc Natl Acad Sci U S A. 2013;110:4087–92.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Diogenes MJ, Dias RB, Rombo DM, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32:11750–62.CrossRefGoogle Scholar
  95. 95.
    Kaufmann TJ, Harrison PM, Richardson MJ, et al. Intracellular soluble alpha-synuclein oligomers reduce pyramidal cell excitability. J Physiol. 2016;594:2751–72.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Rockenstein E, Nuber S, Overk CR, et al. Accumulation of oligomer-prone alpha-synuclein exacerbates synaptic and neuronal degenerationin vivo. Brain. 2014;137:1496–513.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Longhena L, Faustini G, Missale C. Contribution of α-synuclein spreading to Parkinson’s disease synaptopathy. Neural Plast. 2017;2017:1–15.CrossRefGoogle Scholar
  98. 98.
    Di Maio R, Barrett PJ, Hoffman EK, et al. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med. 2016;8:342ra378.Google Scholar
  99. 99.
    Paillusson S, Gomez-Suaga P, Stoica R, et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 2017;134(1):129–49.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Colla E, Coune P, Liu Y, et al. Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci. 2012b;32:3306–20.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Devi L, Raghavendran V, Prabhu BM, et al. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283:9089–100.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Loeb V, Yakunin E, Saada A, et al. The transgenic overexpression of alpha-synuclein and not its related pathology associates with complex I inhibition. J Biol Chem. 2010;285:7334–43.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Lee HJ, Suk JE, Bae EJ, et al. Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun. 2008;372:423–8.CrossRefPubMedGoogle Scholar
  104. 104.
    Lee HJ, Suk JE, Patrick C, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285:9262–72.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Zhang W, Wang T, Pei Z, et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 2005;19:533–42.CrossRefPubMedGoogle Scholar
  106. 106.
    Wilms H, Rosenstiel P, Romero-Ramos M, et al. Suppression of MAP kinases inhibits microglial activation and attenuates neuronal cell death induced by alpha-synuclein protofibrils. Int J Immunopathol Pharmacol. 2009;22:897–909.CrossRefPubMedGoogle Scholar
  107. 107.
    Nakamura K, Nemani VM, Azarbal F, et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem. 2011;286:20710–26.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Choubey V, Safiulina D, Vaarmann A, et al. Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem. 2011;286:10814–24.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Tran HT, Chung CH, Iba M, et al. α-Synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 2014;7:2054–65.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Arti Parihar
    • 1
  • Priyanka Parihar
    • 2
  • Isha Solanki
    • 2
  • Mordhwaj S. Parihar
    • 3
    Email author
  1. 1.Biology DepartmentBellingham Technical CollegeBellinghamUSA
  2. 2.School of Studies in Zoology and BiotechnologyVikram UniversityUjjainIndia
  3. 3.School of Studies in Zoology and Biotechnology, Faculty of Life SciencesVikram UniversityUjjainIndia

Personalised recommendations