A Review on Magnetic Resonance Images Denoising Techniques

  • Abhishek SharmaEmail author
  • Vijayshri Chaurasia
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 748)


Medical image denoising is a very important and challenging area in the field of image processing. Magnetic resonance imaging is a very popular and most effective imaging technique. During the acquisition, MR images get affected by random noise which could be modeled as Gaussian or Rician distribution. In the past few decades, a wide variety of denoising techniques have been proposed. This paper presents a survey of advancements proposed for the denoising of magnetic resonance images. The performance of most significant image denoising domains has been analyzed qualitatively as well as quantitatively on the basis of mean square error and peak signal-to-noise ratio.


Magnetic resonance images Rician noise Gaussian noise Mean square error Peak signal to noise ratio 


  1. 1.
    Angenent, S., Pichon, E., Tannenbaum, A.: Mathematical methods in medical image processing. Bull. (New Ser.) Am. Math. Soc. (2005)Google Scholar
  2. 2.
    Roentgen, W.C.: Ueber eine neue Art von Strahlen. Ann. Phys. 64, 1–37 (1898)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)Google Scholar
  5. 5.
    Mohana, J., Krishnavenib, V., Guoca, Y.: A survey on the magnetic resonance image denoising methods. Biomed. Signal Process. Control 9, 56–69 (2014)Google Scholar
  6. 6.
    Weaver, J.B., Xu, Y., Healy, D.M., Cromwell, L.D.: Filtering noise from images withwavelet transforms. Magn. Reson. Imaging 21, 288–295 (1991)Google Scholar
  7. 7.
    Nowak, R.D.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans. Image Process. 8, 1408–1419 (1999)CrossRefGoogle Scholar
  8. 8.
    Wood, J.C., Johnson, K.M.: Wavelet packet denoising of magnetic resonanceimages: importance of Rician noise at low SNR. Magn. Reson. Med. 41, 631–635 (1999)CrossRefGoogle Scholar
  9. 9.
    Zaroubi, S., Goelman, G.: Complex denoising of MR data via wavelet analysis:application for functional MRI. Magn. Reson. Imaging 18, 59–68 (2000)CrossRefGoogle Scholar
  10. 10.
    Alexander, M.E., Baumgartner, R., Summers, A.R., Windischberger, C., Klarhoefer, M., Moser, E., Somorjai, R.L.: A wavelet-based method for improvingsignal-to-noise ratio and contrast in MR images. Magn. Reson. Imaging 18, 169–180 (2000)CrossRefGoogle Scholar
  11. 11.
    Bao, P., Zhang, L.: Noise reduction for magnetic resonance images via adap-tive multiscale products thresholding. IEEE Trans. Med. Imaging 22, 1089–1099 (2003)CrossRefGoogle Scholar
  12. 12.
    Placidi, G., Alecci, M., Sotgiu, A.: Post-processing noise removal algorithm formagnetic resonance imaging based on edge detection and wavelet analysis. Phys. Med. Biol. 48, 1987–1995 (2003)CrossRefGoogle Scholar
  13. 13.
    Yu, H., Zhao, L.: An efficient denoising procedure for magnetic resonance imaging. In: Proceedings of IEEE 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 2628–2630 (2008)Google Scholar
  14. 14.
    Tan,L., Shi, L.: Multiwavelet-based estimation for improving magnetic reso-nance images. In: Proceedings of IEEE Conference, pp. 1–5 (2009)Google Scholar
  15. 15.
    Wu, Z.Q., Ware, J.A., Jiang, J.: Wavelet-based Rayleigh background removal inMRI. IEEE Electron. Lett. 39, 603–605 (2003)CrossRefGoogle Scholar
  16. 16.
    Starck, J.L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denois-ing. IEEE Trans. Image Process. 11, 670–684 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ma, J., Plonka, G.: Combined curvelet shrinkage and nonlinear anisotropic dif-fusion. IEEE Trans. Image Process. 16, 2198–2206 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional mul-tiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)CrossRefGoogle Scholar
  19. 19.
    Jiang, L., Yang, W.: Adaptive magnetic resonance image denoising using mixture model and wavelet shrinkage. In: Sun, C., Talbot, H., Ourselin, S., Adriaansen, T. (eds.) Proceedings of VIIth Digital Image Computing: Techniques and Applications, The University of Queensland, Sydney, Australia. St. Lucia, Australia, pp. 831–838 (2003)Google Scholar
  20. 20.
    Sijbers, J., Poot, D., den Dekker, A.J., Pintjenst, W.: Automatic estimation of thenoise variance from the histogram of a magnetic resonance image. Phys. Med. Biol. 52, 1335–1348 (2007)CrossRefGoogle Scholar
  21. 21.
    Rajan, J., Poot, D., Juntu, J., Sijbers, J.: Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys. Med. Biol. 55, 441–449 (2010)CrossRefGoogle Scholar
  22. 22.
    Rajan, J., Jeurissen, B., Verhoye, M., Audekerke, J.V., Sijbers, J.: Maximum like-lihood estimation-based denoising of magnetic resonance images usingrestriced local neighborhoods. Phys. Med. Biol. 56, 5221–5234 (2011)CrossRefGoogle Scholar
  23. 23.
    Aja-Fernández, S., Alberola-López, C., Westin, C.F.: Noise and signal estimationin magnitude MRI and Rician distributed images: a LMMSE approach. IEEETrans. Image Process. 17, 1383–1398 (2008)CrossRefGoogle Scholar
  24. 24.
    Golshan, H.M., Hasanzedeh, R.P.R., Yousefzadeh, S.C.: An MRI denoising method using data redundancy and local SNR estimation. Magn. Reson. Imaging 31, 1206–1217 (2013)CrossRefGoogle Scholar
  25. 25.
    Tisdall, D., Atkins, M.S.: MRI denoising via phase error estimation. Proc. SPIE 5747, 646–654 (2005)Google Scholar
  26. 26.
    McVeigh, E.R., Henkelman, R.M., Bronskill, M.J.: Noise and filtration in magnetic resonance imaging. Med. Phys. 12, 586–591 (1985)CrossRefGoogle Scholar
  27. 27.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)CrossRefGoogle Scholar
  28. 28.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Presented at the 6th International Conference Computer Vision, Bombay, India, pp. 839–846 (1998)Google Scholar
  29. 29.
    Coupe, P., Yger, P., Barillot, C.: Fast non local means denoising for 3D MR images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 33–40 (2006)Google Scholar
  30. 30.
    Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4) (2008)Google Scholar
  31. 31.
    Manjon, J.V., Coupe, P., Buades, A., Louis Collins, D., Robles, M.: New methods for MRI denoising based on sparseness and self-similarity. Med. Image Anal. 16(1), 8–27 (2012)Google Scholar
  32. 32.
    Coupe, P., Manjon, J.V., Robles, M., Collins, D.L.: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising. IET Image Process. 6(5), 558–568 (2012)Google Scholar
  33. 33.
    Rajan, J., den Dekker, A.J., Sijbers, J.: A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov–Smirnov test. Signal Process. 103, 16–23 (2014)Google Scholar
  34. 34.
    Kim, D.W., Kim, C., Kim, D.H., Lim, D.H.: Rician nonlocal means denoising for MR images using nonparametric principal component analysis. EURASIP J. Image Video Process. (2011)Google Scholar
  35. 35.
  36. 36.
    Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1) (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.MANITBhopalIndia

Personalised recommendations