Image Denoising using Tight-Frame Dual-Tree Complex Wavelet Transform

  • Shrishail S. GajbharEmail author
  • Manjunath V. Joshi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 748)


In this paper, we propose a new approach to design the 1D biorthogonal filters of dual-tree complex wavelet transform (DTCWT) in order to have almost tight-frame characteristics. The proposed approach involves use of triplet halfband filter bank (THFB) and optimization of free variables obtained using factorization of generalized halfband polynomial (GHBP) to design the filters of two trees of DTCWT. The wavelet functions associated with these trees exhibit better analyticity in terms of qualitative and quantitative measures. Transform-based image denoising using the proposed filters shows comparable performance to the best performing orthogonal wavelet filters.


  1. 1.
    Anantrasirichai, N., Achim, A., Kingsbury, N.G., Bull, D.R.: Atmospheric turbulence mitigation using complex wavelet-based fusion. IEEE Trans. Image Process. 22(6), 2398–2408 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ansari, R., Kim, C.W., Dedovic, M.: Structure and design of two-channel filter banks derived from a triplet of halfband filters. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 46(12), 1487–1496 (1999)CrossRefGoogle Scholar
  3. 3.
    Asikuzzaman, M., Alam, M.J., Lambert, A.J., Pickering, M.R.: Robust DT-CWT based DIBR 3D video watermarking using chrominance embedding. IEEE Trans. Multimed. 18(9), 1733–1748 (2016)CrossRefGoogle Scholar
  4. 4.
    Burrus, C.S.: Bases, orthogonal bases, biorthogonal bases, frames, tight frames, and unconditional bases. Accessed 24 April 2017
  5. 5.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrica 81(3), 425–455 (1994). AugMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fierro, M., Ha, H.G., Ha, Y.H.: Noise reduction based on partial-reference, dual-tree complex wavelet transform shrinkage. IEEE Trans. Image Process. 22(5), 1859–1872 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kingsbury, N.: Image processing with complex wavelets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357(1760), 2543–2560 (1999)CrossRefGoogle Scholar
  8. 8.
    Kingsbury, N.: A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In: ICIP. vol. 2, pp. 375–378. IEEE, USA (2000)Google Scholar
  9. 9.
    Kingsbury, N.: Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. Anal. 10(3), 234–253 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Pearson Higher Education (2010)Google Scholar
  11. 11.
    Patil, B.D., Patwardhan, P.G., Gadre, V.M.: On the design of FIR wavelet filter banks using factorization of a halfband polynomial. IEEE Signal Process. Lett. 15, 485–488 (2008)CrossRefGoogle Scholar
  12. 12.
    Rabbani, H., Gazor, S.: Video denoising in three-dimensional complex wavelet domain using a doubly stochastic modelling. IET Image Process. 6(9), 1262–1274 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Selesnick, I.W. Accessed 08 April 2014
  14. 14.
    Selesnick, I.W.: Hilbert transform pairs of wavelet bases. IEEE Signal Process. Lett. 8(6), 170–173 (2001)CrossRefGoogle Scholar
  15. 15.
    Selesnick, I.W.: The design of approximate Hilbert transform pairs of wavelet bases. IEEE Trans. Signal Process. 50(5), 1144–1152 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)CrossRefGoogle Scholar
  17. 17.
    Shi, H., Luo, S.: A new scheme for the design of Hilbert transform pairs of biorthogonal wavelet bases. EURASIP J. Adv. Signal Process. 2010, 98 (2010)CrossRefGoogle Scholar
  18. 18.
    Tay, D.B.H.: Designing Hilbert-pair of wavelets: recent progress and future trends. In: 6th International Conference on Information Communication and Signal Process. pp. 1–5. IEEE, USA (2007)Google Scholar
  19. 19.
    Tay, D.B., Kingsbury, N.G., Palaniswami, M.: Orthonormal Hilbert-pair of wavelets with (almost) maximum vanishing moments. IEEE Signal Process. Lett. 13(9), 533–536 (2006)CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  21. 21.
    Yu, R., Ozkaramanli, H.: Hilbert transform pairs of biorthogonal wavelet bases. IEEE Trans. Signal Process. 54(6), 2119–2125 (2006)CrossRefGoogle Scholar
  22. 22.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.DA-IICTGandhinagarIndia
  2. 2.WITSolapurIndia

Personalised recommendations