Automated CAD Identification System Using Time–Frequency Representation Based on Eigenvalue Decomposition of ECG Signals

  • Rishi Raj SharmaEmail author
  • Mohit Kumar
  • Ram Bilas Pachori
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 748)


Coronary artery disease (CAD) is a condition where coronary arteries become narrow due to the deposition of plaque inside them. It may result in heart failure and heart attack which are life-threatening conditions. Therefore, human life can be saved by detection of CAD at an early stage. Electrocardiogram (ECG) signals can be used to detect CAD. Manual inspection of ECG recordings is not reliable as the accuracy of the outcome depends on the skills and experience of clinicians. Therefore, an automated detection method for CAD based on a time–frequency representation (TFR) known as improved eigenvalue decomposition of Hankel matrix and Hilbert transform (IEVDHM-HT) using ECG beats is proposed in the present work. Time–frequency flux (TFF), coefficient of variation (COV), and energy concentration measure (ECM) are computed from the TFR matrix and fed to the random forest classifier. The proposed method has yielded 93.77% classification accuracy.


CAD Eigenvalue decomposition Hankel matrix Time–frequency representation 


  1. 1.
    Acharya, U.R., Faust, O., Sree, V., Swapna, G., Martis, R.J., Kadri, N.A., Suri, J.S.: Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput. Methods Prog. Biomed. 113, 55–68 (2014)CrossRefGoogle Scholar
  2. 2.
    Acharya, U.R., Sudarshan, V.K., Koh, J.E.W., Martis, R.J., Hong, T.J., Lih, O.S., Adam, M., Hagiwara, Y., Mukiah, M.R.K., Poo, C.K., Chua, C.K., San, T.R.: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed. Signal Process. Control 31, 31–43 (2017)CrossRefGoogle Scholar
  3. 3.
    Antanavičius, K., Bastys, A., Blužas, J., Gargasas, L., Kaminskienė, S., Urbonavičienė, G., Vainoras, A.: Nonlinear dynamics analysis of electrocardiograms for detection of coronary artery disease. Comput. Methods Prog. Biomed. 92, 198–204 (2008)CrossRefGoogle Scholar
  4. 4.
    Arafat, S., Dohrmann, M., Skubic, M.: Classification of coronary artery disease stress ECGs using uncertainty modeling. In: ICSC Congress on Computational Intelligence Methods and Applications, pp. 1–4 (2005)Google Scholar
  5. 5.
    Bhattacharyya, A., Pachori, R.B.: A multivariate approach for patient specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64, 2003–2015 (2017)CrossRefGoogle Scholar
  6. 6.
    Bigger, J.T., Fleiss, J.L., Steinman, R.C., Rolnitzky, L.M., Schneider, W.J., Stein, P.K.: RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation 91, 1936–1943 (1995)CrossRefGoogle Scholar
  7. 7.
    Boashash, B., Azemi, G., O’Toole, J.M.: Time-frequency processing of nonstationary signals: advanced TFD design to aid diagnosis with highlights from medical applications. IEEE Signal Process. Mag. 30, 108–119 (2013)CrossRefGoogle Scholar
  8. 8.
    Boashash, B., Khan, N.A., Ben-Jabeur, T.: Time-frequency features for pattern recognition using high-resolution TFDs: a tutorial review. Digit. Signal Process. 40, 1–30 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefGoogle Scholar
  10. 10.
    Giri, D., Acharya, U.R., Martis, R.J., Sree, S.V., Lim VI, T.C., T.A., Suri, J.S.: Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowl.-Based Syst. 37, 274–282 (2013)Google Scholar
  11. 11.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101, e215–e220 (2000)CrossRefGoogle Scholar
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)CrossRefGoogle Scholar
  13. 13.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Huang, N.E.: Hilbert-Huang Transform and Its Applications, vol. 16. World Scientific (2014)Google Scholar
  15. 15.
    Iyengar, N., Peng, C., Morin, R., Goldberger, A.L., Lipsitz, L.A.: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 271, 1078–1084 (1996)CrossRefGoogle Scholar
  16. 16.
    Jain, P., Pachori, R.B.: GCI identification from voiced speech using the eigen value decomposition of Hankel matrix. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 371–376 (2013)Google Scholar
  17. 17.
    Jain, P., Pachori, R.B.: Event-based method for instantaneous fundamental frequency estimation from voiced speech based on eigenvalue decomposition of the Hankel matrix. IEEE/ACM Trans. Audio Speech Lang. Process. 22, 1467–1482 (2014)CrossRefGoogle Scholar
  18. 18.
    Jain, P., Pachori, R.B.: An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Franklin Inst. 352, 4017–4044 (2015)Google Scholar
  19. 19.
    Karamanos, K., Nikolopoulos, S., Hizanidis, K., Manis, G., Alexandridi, A., Nikolakeas, S.: Block entropy analysis of heart rate variability signals. Int. J. Bifurc. Chaos 16, 2093–2101 (2006)CrossRefGoogle Scholar
  20. 20.
    Kumar, M., Pachori, R.B., Acharya, U.R.: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals. Expert Syst. Appl. 63, 165–172 (2016)CrossRefGoogle Scholar
  21. 21.
    Kumar, M., Pachori, R.B., Acharya, U.R.: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed. Signal Process. Control 31, 301–308 (2017)CrossRefGoogle Scholar
  22. 22.
    Kumar, M., Pachori, R.B., Acharya, U.: Automated diagnosis of myocardial infarction ECG Signals using sample entropy in flexible analytic wavelet transform framework. Entropy 19, 488 (2017)CrossRefGoogle Scholar
  23. 23.
    Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013)CrossRefGoogle Scholar
  24. 24.
    McKight, P.E., Najab, J.: Kruskal-Wallis Test. Corsini Encyclopedia of Psychology (2010)Google Scholar
  25. 25.
    What is coronary heart disease? (2015). Accessed 01 Apr 2016
  26. 26.
    Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236 (1985)CrossRefGoogle Scholar
  27. 27.
    Patidar, S., Pachori, R.B., Acharya, U.R.: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl.-Based Syst. 82, 1–10 (2015)CrossRefGoogle Scholar
  28. 28.
    Prabhakaran, D., Jeemon, P., Roy, A.: Cardiovascular diseases in India current. Circulation 133, 1605–1620 (2016)CrossRefGoogle Scholar
  29. 29.
    San Roman, J., Vilacosta, I., Castillo, J., Rollan, M., Hernandez, M., Peral, V., Garcimartin, I., de la, Torre, M.d.M., Fernández-Avilés, F.: Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 80, 370–376 (1998)Google Scholar
  30. 30.
    Sharma, R., Pachori, R.B., Upadhyay, A.: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput. Appl. 28, 2959–2978 (2017)Google Scholar
  31. 31.
    Sharma, R.R., Pachori, R.B.: Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals. IET Sci. Meas. Technol. 12(1), 72–82 (2018)Google Scholar
  32. 32.
    Sharma, R.R., Pachori, R.B.: A new method for non-stationary signal analysis using eigenvalue decomposition of the Hankel matrix and Hilbert transform. In: Fourth International Conference on Signal Processing and Integrated Networks (SPIN 2017), Noida India, pp. 484–488, Feb, 2017Google Scholar
  33. 33.
    Sood, S., Kumar, M., Pachori, R.B., Acharya, U.R.: Application of empirical mode decomposition-based features for analysis of normal and CAD heart rate signals. J. Mech. Med. Biol. 16, 1640002 (2016)CrossRefGoogle Scholar
  34. 34.
    Wong, N.D.: Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 11, 276–289 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rishi Raj Sharma
    • 1
    Email author
  • Mohit Kumar
    • 1
  • Ram Bilas Pachori
    • 1
  1. 1.Discipline of Electrical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations