Advertisement

Direct Photosynthetic Production of Plastic Building Block Chemicals from CO2

  • Xinyu Song
  • Yunpeng Wang
  • Jinjin Diao
  • Shubin Li
  • Lei Chen
  • Weiwen Zhang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1080)

Abstract

Hydroxy acids have attracted attention as building block chemicals due to their roles as precursors for the production of various pharmaceuticals, vitamins, antibiotics, and flavor compounds as well as monomers for biodegradable plastic polyesters. The current approach to hydroxy acid production relies on nonrenewable fossil resources such as petroleum for raw materials, raising issues such as the rising costs of starting materials and environmental incompatibility. Recently, synthetic biology approaches based on the rational design and reconstruction of new biological systems were implemented to produce chemicals from a variety of renewable substrates. In addition to research using heterotrophic organic carbon-dependent Escherichia coli or yeasts, photosynthetic microorganisms such as cyanobacteria possessing the ability to absorb solar radiation and fix carbon dioxide (CO2) as a sole carbon source have been engineered into a new type of microbial cell factory to directly produce hydroxy acids from CO2. In this chapter, recent progress regarding the direct photosynthetic production of three important hydroxy acids—3-hydroxypropionate (3-HP), 3-hydroxybutyrate (3-HB), and 3-hydroxyvalerate (3-HV)—from CO2 in cyanobacteria is summarized and discussed.

Keywords

Synthetic biology Cyanobacteria 3-Hydroxybutyrate 3-Hydroxypropionate 3-Hydroxyvalerate 

Abbreviations

3PG

D-3-phosphoglyceric acid

Acetyl-CoA/AcCOA

Acetyl coenzyme A

ADP

Adenosine 5′-diphosphate

ADP-GCS

Adenosine-5′-diphosphoglucose

AKG

α-ketoglutaric acid

AMP

Adenosine 5′-monophosphate

ATP

Adenosine 5′-triphosphate (ATP)

COA

Coenzyme A hydrate

DHAP

Dihydroxyacetone phosphate

F6P

D-Fructose 6-phosphate

FBP

D-fructose 1,6-bisphosphate

FUM

Sodium fumarate dibasic

G6P

D-glucose 6-phosphate

GAP

DL-glyceraldehyde 3-phosphate

GLU

L-glutamic acid

iTRAQ

Isobaric tag for relative and absolute quantitation

KEGG

Kyoto encyclopedia of genes and genomes

LC-MS/MS

Liquid chromatography-tandem mass spectrometry

NAD

α-nicotinamide adenine dinucleotide

NADH

NADH

NADP

NADP

NADPH

NADPH

OXA

Oxaloacetic acid

PEP

Phospho (enol) pyruvic acid

R5P

D-ribose 5-phosphate

RiBP

D-ribulose 1,5-bisphosphate

UDP-GCS

Uridine 5′-diphosphoglucose

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) [No. 21621004, 31770100, 31170043, 31270086, and 31370115], the National Basic Research Program of China (National “973” program) [No. 2014CB745101 and No. 2011CBA00803], and the National Science Foundation of Tianjin, China [No. 13JCQNJC09900].

Conflicts of Interest

All authors declare no conflicts of interest.

References

  1. 1.
    Agrawal GK, Kato H, Asayama M, Shirai M (2001) An AU-box motif upstream of the SD sequence of light-dependent psbA transcripts confers mRNA instability in darkness in cyanobacteria. Nucleic Acids Res 29(9):1835–1843CrossRefGoogle Scholar
  2. 2.
    Alber B, Olinger M, Rieder A, Kockelkorn D, Jobst B, Hugler M, Fuchs G (2006) Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188(24):8551–8559CrossRefGoogle Scholar
  3. 3.
    Baez-Viveros JL, Flores N, Juarez K, Castillo-Espana P, Bolivar F, Gosset G (2007) Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microb Cell Factories 6:30CrossRefGoogle Scholar
  4. 4.
    Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164(2):318–329CrossRefGoogle Scholar
  5. 5.
    Benner SA (2003) Synthetic biology: act natural. Nature 421(6919):118CrossRefGoogle Scholar
  6. 6.
    Bennette NB, Eng JF, Dismukes GC (2011) An LC-MS-based chemical and analytical method for targeted metabolite quantification in the model cyanobacterium Synechococcus sp. PCC 7002. Anal Chem 83(10):3808–3816CrossRefGoogle Scholar
  7. 7.
    Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318(5857):1782–1786CrossRefGoogle Scholar
  8. 8.
    Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609–620CrossRefGoogle Scholar
  9. 9.
    Chen Y, Bao J, Kim IK, Siewers V, Nielsen J (2014) Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng 22:104–109CrossRefGoogle Scholar
  10. 10.
    Chen Y, Siewers V, Nielsen J (2012) Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One 7(8):e42475CrossRefGoogle Scholar
  11. 11.
    Chiba T, Nakai T (1985) A synthetic approach to (+)-thienamycin from methylene (R)-3-hydroxybutanoate. A new entry to (3R,4R)-3-[(R)-1-hydroxyethyl]-4-acetoxy-2-azetidinone. Chem Lett 161:651–654CrossRefGoogle Scholar
  12. 12.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRefGoogle Scholar
  13. 13.
    Choi O, Kim T, Woo HM, Um Y (2014) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4:6961Google Scholar
  14. 14.
    Chu HS, Kim YS, Lee CM, Lee JH, Jung WS, Ahn JH, Song SH, Choi IS, Cho KM (2015) Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol Bioeng 112(2):356–364CrossRefGoogle Scholar
  15. 15.
    Dempo Y, Ohta E, Nakayama Y, Bamba T, Fukusaki E (2014) Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites 4(2):499–516CrossRefGoogle Scholar
  16. 16.
    Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453CrossRefGoogle Scholar
  17. 17.
    Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Factories 4(1):30CrossRefGoogle Scholar
  18. 18.
    Gao HJ, Wu Q, Chen GQ (2002) Enhanced production of D-(-)-3-hydroxybutyric acid by recombinant Escherichia coli. FEMS Microbiol Lett 213(1):59–65PubMedGoogle Scholar
  19. 19.
    Gao L, Pei G, Chen L, Zhang W (2015) A global network-based protocol for functional inference of hypothetical proteins in Synechocystis sp. PCC 6803. J Microbiol Methods 116:44–52CrossRefGoogle Scholar
  20. 20.
    Gerngross TU (1999) Can biotechnology move us toward a sustainable society? Nat Biotechnol 17(6):541–544CrossRefGoogle Scholar
  21. 21.
    Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR (2012) Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS One 7(11):e50470CrossRefGoogle Scholar
  22. 22.
    Hein S, Tran H, Steinbüchel A (1998) Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170(3):162–170CrossRefGoogle Scholar
  23. 23.
    Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106(3):462–473PubMedGoogle Scholar
  24. 24.
    Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593CrossRefGoogle Scholar
  25. 25.
    Huang Y, Li Z, Shimizu K, Ye Q (2013) Co-production of 3-hydroxypropionic acid and 1, 3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions. Bioresour Technol 128:505–512CrossRefGoogle Scholar
  26. 26.
    Hügler M, Menendez C, Schägger H, Fuchs G (2002) Malonyl-coenzyme A reductase from chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184(9):2404–2410CrossRefGoogle Scholar
  27. 27.
    Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77(6):1305–1316CrossRefGoogle Scholar
  28. 28.
    Ishii M, Chuakrut S, Arai H, Igarashi Y (2004) Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Appl Microbiol Biotechnol 64(5):605–610CrossRefGoogle Scholar
  29. 29.
    Jiang X, Meng X, Xian M (2009) Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biotechnol 82(6):995–1003CrossRefGoogle Scholar
  30. 30.
    Jung WS, Kang JH, Chu HS, Choi IS, Cho KM (2014) Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metab Eng 23:116–122CrossRefGoogle Scholar
  31. 31.
    Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3(1):64–76CrossRefGoogle Scholar
  32. 32.
    Kildegaard KR, Hallström BM, Blicher TH, Sonnenschein N, Jensen NB, Sherstyk S, Harrison SJ, Maury J, Herrgard M, Juncker A (2015). Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid detoxification. Metab Eng XGoogle Scholar
  33. 33.
    Kim K, Kim SK, Park YC, Seo JH (2014) Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 156:170–175CrossRefGoogle Scholar
  34. 34.
    Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154(1):410–422CrossRefGoogle Scholar
  35. 35.
    Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58(2):123–137CrossRefGoogle Scholar
  36. 36.
    Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photo- synthetic n-butanol biosynthesis in cyanobacteria. Energ Environ Sci 6:2672–2681Google Scholar
  37. 37.
    Lan EI, Chuang DS, Shen CR, Lee AM, Ro SY, Liao JC (2015) Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. Metab Eng 31:163–170CrossRefGoogle Scholar
  38. 38.
    Lee SH, Park SJ, Lee SY, Hong SH (2008) Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 79(4):633–641CrossRefGoogle Scholar
  39. 39.
    Lee SY, Lee Y (2003) Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(–)-hydroxycarboxylic acids. Appl Environ Microbiol 69(6):3421–3426CrossRefGoogle Scholar
  40. 40.
    Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782Google Scholar
  41. 41.
    Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC (2016) CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38:293–302CrossRefGoogle Scholar
  42. 42.
    Liang F, Lindblad P (2016) Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803. Metab Eng 38:56–64CrossRefGoogle Scholar
  43. 43.
    Lin Q, Jia B, Mitchell LA, Luo J, Yang K, Zeller KI et al (2014) RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synth Biol 4(3):213–220Google Scholar
  44. 44.
    Liu J, Chen L, Wang J, Qiao J, Zhang W (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels 5(1):68CrossRefGoogle Scholar
  45. 45.
    Liu Q, Ouyang SP, Chung A, Wu Q, Chen GQ (2007) Microbial production of R-3-hydroxybutyric acid by recombinant E. coli harboring genes of phbA, phbB, and tesB. Appl Microbiol Biotechnol 76(4):811–818CrossRefGoogle Scholar
  46. 46.
    Liu X, Sheng J, Curtiss R III (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci 108(17):6899–6904CrossRefGoogle Scholar
  47. 47.
    Ludwig M, Bryant DA (2011) Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by next-gen (SOLiD™) sequencing of cDNA. Front Microbiol 2:41CrossRefGoogle Scholar
  48. 48.
    Lynch MD, Gill RT, Lipscomb TE (2016) Method for producing 3-hydroxypropionic acid and other products. Google PatentsGoogle Scholar
  49. 49.
    Marraccini P, Bulteau S, Cassier-Chauvat C, Mermet-Bouvier P, Chauvat F (1993) A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis. Plant Mol Biol 23(4):905–909CrossRefGoogle Scholar
  50. 50.
    Martin CH, Prather KL (2009) High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida. J Biotechnol 139(1):61–67CrossRefGoogle Scholar
  51. 51.
    Mukherji S, van Oudenaarden A (2009) Synthetic biology: understanding biological design from synthetic circuits. Nat Rev Genet 10(12):859–871CrossRefGoogle Scholar
  52. 52.
    Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103(35):13126–13131CrossRefGoogle Scholar
  53. 53.
    Nair U, Thomas C, Golden SS (2001) Functional elements of the strong psbAI promoter of Synechococcus elongatus PCC 7942. J Bacteriol 183(5):1740–1747CrossRefGoogle Scholar
  54. 54.
    Nie L, Ren Y, Janakiraman A, Smith S, Schulz H (2008) A novel paradigm of fatty acid β-oxidation exemplified by the thioesterase-dependent partial degradation of conjugated linoleic acid that fully supports growth of Escherichia coli. Biochemistry 47(36):9618–9626CrossRefGoogle Scholar
  55. 55.
    Nozaki S, Webb ME, Niki H (2012) An activator for pyruvoyl-dependent l-aspartate α-decarboxylase is conserved in a small group of the γ-proteobacteria including Escherichia coli. MicrobiologyOpen 1(3):298–310CrossRefGoogle Scholar
  56. 56.
    Osanai T, Oikawa A, Azuma M, Tanaka K, Saito K, Hirai MY, Ikeuchi M (2011) Genetic engineering of group 2 σ factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803. J Biol Chem 286(35):30962–30971CrossRefGoogle Scholar
  57. 57.
    Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24(10):1257–1262CrossRefGoogle Scholar
  58. 58.
    Prather KL, Martin CH (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol 19(5):468–474CrossRefGoogle Scholar
  59. 59.
    Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W (2012) Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 11(11):5286–5300CrossRefGoogle Scholar
  60. 60.
    Raj SM, Rathnasingh C, Jung W-C, Selvakumar E, Park S (2010) A novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol Bioprocess Eng 15(1):131–138CrossRefGoogle Scholar
  61. 61.
    Rathnasingh C, Raj SM, Jo JE, Park S (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 104(4):729–739PubMedGoogle Scholar
  62. 62.
    Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157(4):633–640CrossRefGoogle Scholar
  63. 63.
    Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212CrossRefGoogle Scholar
  64. 64.
    Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, Hess WR, Aro E-M (2012) Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803. Plant Physiol 160(2):1000–1010CrossRefGoogle Scholar
  65. 65.
    Sato S, Shimoda Y, Muraki A, Kohara M, Nakamura Y, Tabata S (2007) A large-scale protein protein interaction analysis in Synechocystis sp. PCC6803. DNA Res 14(5):207–216CrossRefGoogle Scholar
  66. 66.
    Schwarz D, Orf I, Kopka J, Hagemann M (2013) Recent applications of metabolomics toward cyanobacteria. Metabolites 3(1):72–100CrossRefGoogle Scholar
  67. 67.
    Shimamura E, Scandola M (1994) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxypropionate). Macromolecules 27(16):4429–4435CrossRefGoogle Scholar
  68. 68.
    Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen L, Zhang W (2014) Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresour Technol 170:522–529CrossRefGoogle Scholar
  69. 69.
    Summerfield TC, Sherman LA (2008) Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. Appl Environ Microbiol 74(17):5276–5284CrossRefGoogle Scholar
  70. 70.
    Thomas DJ, Thomas J, Youderian PA, Herbert SK (2001) Photoinhibition and light-induced cyclic electron transport in ndhB–and psaE–mutants of Synechocystis sp. PCC 6803. Plant Cell Physiol 42(8):803–812CrossRefGoogle Scholar
  71. 71.
    Tian X, Chen L, Wang J, Qiao J, Zhang W (2013) Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteome 78:326–345CrossRefGoogle Scholar
  72. 72.
    Todd JD, Curson AR, Nikolaidou-Katsaraidou N, Brearley CA, Watmough NJ, Chan Y, Page PC, Sun L, Johnston AW (2010) Molecular dissection of bacterial acrylate catabolism–unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ Microbiol 12(2):327–343CrossRefGoogle Scholar
  73. 73.
    Tseng HC, Harwell CL, Martin CH, Prather KL (2010) Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli. Microb Cell Factories 9:96CrossRefGoogle Scholar
  74. 74.
    Tseng HC, Martin CH, Nielsen DR, Prather KL (2009) Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl Environ Microbiol 75(10):3137–3145CrossRefGoogle Scholar
  75. 75.
    Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681CrossRefGoogle Scholar
  76. 76.
    van de Meene AM, Hohmann-Marriott MF, Vermaas WF, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184(5):259–270CrossRefGoogle Scholar
  77. 77.
    Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR (2013) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77CrossRefGoogle Scholar
  78. 78.
    Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W (2014) Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Factories 13:151CrossRefGoogle Scholar
  79. 79.
    Wang Y, Sun T, Gao X, Shi M, Wu L, Chen L, Zhang W (2016) Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 34:60–70CrossRefGoogle Scholar
  80. 80.
    Wargacki AJ, Leonard E, Win MN et al (2012) An engineered microbial platform for direct biofuel production from brown macroalgae[J]. Science 335(6066):308–313Google Scholar
  81. 81.
    Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Factories 15(1):115CrossRefGoogle Scholar
  82. 82.
    Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass. Volume 1-results of screening for potential candidates from sugars and synthesis gas. Department of Energy, Washington, DCGoogle Scholar
  83. 83.
    Yao L, Cengic I, Anfelt J, Hudson EP (2016) Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5(3):207–212CrossRefGoogle Scholar
  84. 84.
    Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452CrossRefGoogle Scholar
  85. 85.
    Yun EJ, Kwak S, Kim SR, Park YC, Jin YS, Kim KH (2015) Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae. J Biotechnol 209:23–30CrossRefGoogle Scholar
  86. 86.
    Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30(4):354–359CrossRefGoogle Scholar
  87. 87.
    Zhou J, Zhang H, Meng H, Zhu Y, Bao G, Zhang Y, Li Y, Ma Y (2014) Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep 4:4500CrossRefGoogle Scholar
  88. 88.
    Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6(1):106CrossRefGoogle Scholar
  89. 89.
    Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W (2015) Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Mol Biosyst 11(3):770–782CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xinyu Song
    • 1
    • 2
    • 3
    • 4
    • 5
  • Yunpeng Wang
    • 2
    • 3
    • 4
  • Jinjin Diao
    • 2
    • 3
    • 4
  • Shubin Li
    • 2
    • 3
    • 4
  • Lei Chen
    • 2
    • 3
    • 4
  • Weiwen Zhang
    • 1
    • 2
    • 3
    • 4
  1. 1.Center for Biosafety Research and StrategyTianjin UniversityTianjinChina
  2. 2.Laboratory of Synthetic Microbiology, School of Chemical Engineering & TechnologyTianjin UniversityTianjinChina
  3. 3.Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinChina
  4. 4.SynBio Research PlatformCollaborative Innovation Center of Chemical Science and EngineeringTianjinChina
  5. 5.School of Environmental Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations