Advertisement

Production of Industrial Chemicals from CO2 by Engineering Cyanobacteria

  • Jie Zhou
  • Hengkai Meng
  • Wei Zhang
  • Yin Li
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1080)

Abstract

As photosynthetic prokaryotes, cyanobacteria can directly convert CO2 to organic compounds and grow rapidly using sunlight as the sole source of energy. The direct biosynthesis of chemicals from CO2 and sunlight in cyanobacteria is therefore theoretically more attractive than using glucose as carbon source in heterotrophic bacteria. To date, more than 20 different target chemicals have been synthesized from CO2 in cyanobacteria. However, the yield and productivity of the constructed strains is about 100-fold lower than what can be obtained using heterotrophic bacteria, and only a few products reached the gram level. The main bottleneck in optimizing cyanobacterial cell factories is the relative complexity of the metabolism of photoautotrophic bacteria. In heterotrophic bacteria, energy metabolism is integrated with the carbon metabolism, so that glucose can provide both energy and carbon for the synthesis of target chemicals. By contrast, the energy and carbon metabolism of cyanobacteria are separated. First, solar energy is converted into chemical energy and reducing power via the light reactions of photosynthesis. Subsequently, CO2 is reduced to organic compounds using this chemical energy and reducing power. Finally, the reduced CO2 provides the carbon source and chemical energy for the synthesis of target chemicals and cell growth. Consequently, the unique nature of the cyanobacterial energy and carbon metabolism determines the specific metabolic engineering strategies required for these organisms. In this chapter, we will describe the specific characteristics of cyanobacteria regarding their metabolism of carbon and energy, summarize and analyze the specific strategies for the production of chemicals in cyanobacteria, and propose metabolic engineering strategies which may be most suitable for cyanobacteria.

Keywords

Cyanobacteria Carbon metabolism Energy metabolism Metabolic engineering Rerouting carbon flux Strong promoter Cofactor balance 

References

  1. 1.
    Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528PubMedPubMedCentralGoogle Scholar
  2. 2.
    Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865CrossRefGoogle Scholar
  3. 3.
    Wang Y, Tashiro Y, Sonomoto K (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 119:10–18CrossRefGoogle Scholar
  4. 4.
    Zhou J, Zhang H, Zhang Y, Li Y, Ma Y (2012) Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng 14:394–400CrossRefGoogle Scholar
  5. 5.
    Zhou J, Zhang H, Meng H, Zhang Y, Li Y (2014) Production of optically pure D-lactate from CO2 by blocking the PHB and acetate pathways and expressing D-lactate dehydrogenase in cyanobacterium Synechocystis sp. PCC 6803. Process Biochem 49:2071–2077CrossRefGoogle Scholar
  6. 6.
    Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108CrossRefGoogle Scholar
  7. 7.
    Han L, Liao JC (2013) Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb Cell Factories 12:4CrossRefGoogle Scholar
  8. 8.
    Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180CrossRefGoogle Scholar
  9. 9.
    Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110:1249–1254CrossRefGoogle Scholar
  10. 10.
    Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci 9:1400–1411CrossRefGoogle Scholar
  11. 11.
    Wang X, Liu W, Xin C, Zheng Y, Cheng Y, Sun S, Li R, Zhu X-G, Dai SY, Rentzepis PM, Yuan JS (2016) Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc Natl Acad Sci U S A 113:14225–14230CrossRefGoogle Scholar
  12. 12.
    Qiao C, Duan Y, Zhang M, Hagemann M, Luo Q, Lu X (2017) Effects of lowered and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. Appl Environ Microbiol 163:1319–1328Google Scholar
  13. 13.
    Zhou J, Zhu T, Cai Z, Li Y (2016) From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Factories 15:2CrossRefGoogle Scholar
  14. 14.
    Nixon PJ, Mullineaux CW (1807) Regulation of photosynthetic electron transport. Biochim Biophys Acta 2011:855–855Google Scholar
  15. 15.
    Giardi MT, Pace E (2005) Photosynthetic proteins for technological applications. Trends Biotechnol Trends Biotechnol 23:257–263CrossRefGoogle Scholar
  16. 16.
    Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81CrossRefGoogle Scholar
  17. 17.
    Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78CrossRefGoogle Scholar
  18. 18.
    Marcus Y, Altman-Gueta H, Wolff Y, Gurevitz M (2011) Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC 6803. J Exp Bot 62:4173–4182CrossRefGoogle Scholar
  19. 19.
    Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336CrossRefGoogle Scholar
  20. 20.
    Burnap RL, Hagemann M, Kaplan A (2015) Regulation of CO2 concentrating mechanism in cyanobacteria. Life 5:348CrossRefGoogle Scholar
  21. 21.
    Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth Res 109:47–57CrossRefGoogle Scholar
  22. 22.
    Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci U S A 105:17199–17204CrossRefGoogle Scholar
  23. 23.
    Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1551CrossRefGoogle Scholar
  24. 24.
    Xiong W, Brune D, Vermaas WF (2014) The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93:786–796CrossRefGoogle Scholar
  25. 25.
    Zhang S, Bryant DA (2015) Biochemical validation of the glyoxylate cycle in the cyanobacterium chlorogloeopsis fritschii strain PCC 9212. J Biol Chem 290:14019–14030CrossRefGoogle Scholar
  26. 26.
    Xiong W, Cano M, Wang B, Douchi D, Yu J (2017) The plasticity of cyanobacterial carbon metabolism. Curr Opin Chem Biol 41:12–19CrossRefGoogle Scholar
  27. 27.
    Grotjohann I, Fromme P (2005) Structure of cyanobacterial photosystem I. Photosynth Res 85:51–72CrossRefGoogle Scholar
  28. 28.
    Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55CrossRefGoogle Scholar
  29. 29.
    Bryant DA (1994) The molecular biology of cyanobacteria. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  30. 30.
    Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496CrossRefGoogle Scholar
  31. 31.
    Saer RG, Blankenship RE (2017) Light harvesting in phototrophic bacteria: structure and function. Biochem J 474:2107–2131CrossRefGoogle Scholar
  32. 32.
    Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317CrossRefGoogle Scholar
  33. 33.
    Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci U S A 108:3941–3946CrossRefGoogle Scholar
  34. 34.
    Zhou J, Zhang FL, Meng HK, Zhang YP, Li Y (2016) Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng 38:217–227CrossRefGoogle Scholar
  35. 35.
    Hasunuma T, Matsuda M, Senga Y, Aikawa S, Toyoshima M, Shimakawa G, Miyake C, Kondo A (2014) Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative electron flow. Biotechnol Biofuels 7:493CrossRefGoogle Scholar
  36. 36.
    Gong F, Cai Z, Li Y (2016) Synthetic biology for CO2 fixation. Sci China Life Sci 59:1106–1114CrossRefGoogle Scholar
  37. 37.
    Zhu B, Chen G, Cao X, Wei D (2017) Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications. Bioresour Technol 244:1207–1215CrossRefGoogle Scholar
  38. 38.
    Bracher A, Starling-Windhof A, Hartl FU, Hayer-Hartl M (2011) Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco. Nat Struc Mol Biol 18:875–880CrossRefGoogle Scholar
  39. 39.
    Stec B (2012) Structural mechanism of RuBisCO activation by carbamylation of the active site lysine. Proc Natl Acad Sci U S A 109:18785–18790CrossRefGoogle Scholar
  40. 40.
    Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35CrossRefGoogle Scholar
  41. 41.
    Mueller-Cajar O, Morell M, Whitney SM (2007) Directed evolution of Rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme. Biochemistry 46:14067–14074CrossRefGoogle Scholar
  42. 42.
    Parikh MR, Greene DN, Woods KK, Matsumura I (2006) Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Protein Eng Des Sel 19:113–119CrossRefGoogle Scholar
  43. 43.
    Greene Dina N, Whitney Spencer M, Matsumura I (2007) Artificially evolved Synechococcus PCC 6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J 404:517–524CrossRefGoogle Scholar
  44. 44.
    Cai Z, Liu G, Zhang J, Li Y (2014) Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell 5:552–562CrossRefGoogle Scholar
  45. 45.
    Durão P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M (2015) Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat Chem Biol 11:148–155CrossRefGoogle Scholar
  46. 46.
    de Godos I, Mendoza JL, Acien FG, Molina E, Banks CJ, Heaven S, Rogalla F (2014) Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol 153:307–314CrossRefGoogle Scholar
  47. 47.
    Zarzycki J, Axen SD, Kinney JN, Kerfeld CA (2013) Cyanobacterial-based approaches to improving photosynthesis in plants. J Exp Bot 64:787–798CrossRefGoogle Scholar
  48. 48.
    Burnap R, Hagemann M, Kaplan A (2015) Regulation of CO2 concentrating mechanism in cyanobacteria. Life 5:348–371CrossRefGoogle Scholar
  49. 49.
    Singh SK, Sundaram S, Sinha S, Rahman MA, Kapur S (2016) Recent advances in CO2 uptake and fixation mechanism of cyanobacteria and microalgae. Crit Rev Environ Sci Technol 46:1297–1323CrossRefGoogle Scholar
  50. 50.
    Kamennaya NA, Ahn S, Park H, Bartal R, Sasaki KA, Holman H-Y, Jansson C (2015) Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC 6803 enhances biomass production. Metab Eng 29:76–85CrossRefGoogle Scholar
  51. 51.
    Diaz-Troya S, Lopez-Maury L, Sanchez-Riego AM, Roldan M, Florencio FJ (2014) Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: analysis of the AGP and glycogen synthases. Mol Plant 7:87–100CrossRefGoogle Scholar
  52. 52.
    Joseph A, Aikawa S, Sasaki K, Teramura H, Hasunuma T, Matsuda F, Osanai T, Hirai MY, Kondo A (2014) Rre37 stimulates accumulation of 2-oxoglutarate and glycogen under nitrogen starvation in Synechocystis sp. PCC 6803. FEBS Lett 588:466–471CrossRefGoogle Scholar
  53. 53.
    Guerra LT, Xu Y, Bennette N, McNeely K, Bryant DA, Dismukes GC (2013) Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Biotechnol 166:65–75CrossRefGoogle Scholar
  54. 54.
    Grundel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:3032–3043CrossRefGoogle Scholar
  55. 55.
    Carrieri D, Paddock T, Maness P-C, Seibert M, Yu J (2012) Photo-catalytic conversion of carbon dioxide to organic acids by a recombinant cyanobacterium incapable of glycogen storage. Energy Environ Sci 5:9457–9461CrossRefGoogle Scholar
  56. 56.
    Veetil VP, Angermayr SA, Hellingwerf KJ (2017) Ethylene production with engineered Synechocystis sp PCC 6803 strains. Microb Cell Factories 16:34CrossRefGoogle Scholar
  57. 57.
    van der Woude AD, Angermayr SA, Puthan Veetil V, Osnato A, Hellingwerf KJ (2014) Carbon sink removal: increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant. J Biotechnol 184:100–102CrossRefGoogle Scholar
  58. 58.
    Miao XL, Wu QY, Wu GF, Zhao NM (2003) Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803. FEMS Microbiol Lett 218:71–77CrossRefGoogle Scholar
  59. 59.
    Carrieri D, Broadbent C, Carruth D, Paddock T, Ungerer J, Maness PC, Ghirardi M, Yu J (2015) Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp. PCC 6803 DeltaglgC, a strain incapable of glycogen storage. Microb Biotechnol 8:275–280CrossRefGoogle Scholar
  60. 60.
    Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109:6018–6023CrossRefGoogle Scholar
  61. 61.
    Angermayr SA, Paszota M, Hellingwerf KJ (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 78:7098–7106CrossRefGoogle Scholar
  62. 62.
    Li C, Tao F, Ni J, Wang Y, Yao F, Xu P (2015) Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy. Sci Rep 5:9777CrossRefGoogle Scholar
  63. 63.
    Meng H, Liu P, Sun H, Cai Z, Zhou J, Lin J, Li Y (2016) Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. Sci Rep 6:24887CrossRefGoogle Scholar
  64. 64.
    Choi Y-N, Park JM (2016) Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresour Technol 13:54–57CrossRefGoogle Scholar
  65. 65.
    Ihara M, Kawano Y, Urano M, Okabe A (2013) Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase. PLoS One 8:e71581CrossRefGoogle Scholar
  66. 66.
    Angermayr S, van der Woude A, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf K (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC 6803. Biotechnol Biofuels 7:99CrossRefGoogle Scholar
  67. 67.
    Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24:1061–1068CrossRefGoogle Scholar
  68. 68.
    Angermayr SA, Gorchs Rovira A, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33:352–361CrossRefGoogle Scholar
  69. 69.
    Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78:2660–2668CrossRefGoogle Scholar
  70. 70.
    Yang H, Liu J, Wen X, Lu C (1847) Molecular mechanism of photosystem I assembly in oxygenic organisms. Biochim Biophys Acta 2015:838–848Google Scholar
  71. 71.
    Assobhei O, Kanouni AE, Ismaili M, Loutfi M, Petitdemange H (1998) Effect of acetic and butyric acids on the stability of solvent and spore formation by Clostridium acetobutylicum ATCC 824 during repeated subculturing. J Ferment Bioeng 85:209–212CrossRefGoogle Scholar
  72. 72.
    Najafpour MM, Carpentier R, Allakhverdiev SI (2015) Artificial photosynthesis. J Photochem Photobiol B 152:1–3CrossRefGoogle Scholar
  73. 73.
    Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214CrossRefGoogle Scholar
  74. 74.
    Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81CrossRefGoogle Scholar
  75. 75.
    Gupta P, Lee SM, Choi HJ (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417CrossRefGoogle Scholar
  76. 76.
    Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRefGoogle Scholar
  77. 77.
    Montgomery BL (2014) The regulation of light sensing and light harvesting impacts the use of cyanobacteria as biotechnology platforms. Front Bioeng Biotechnol 2:22CrossRefGoogle Scholar
  78. 78.
    Janssen PJD, Lambreva MD, Plumeré N, Bartolucci C, Antonacci A, Buonasera K, Frese RN, Scognamiglio V, Rea G (2014) Photosynthesis at the front of a sustainable life. Front Chem 2:36CrossRefGoogle Scholar
  79. 79.
    Gonzalez-Esquer CR, Shubitowski TB, Kerfeld CA (2015) Streamlined construction of the cyanobacterial CO2-fixing organelle via protein domain fusions for use in plant synthetic biology. Plant Cell 27:2637–2644CrossRefGoogle Scholar
  80. 80.
    Zhao W, Xie J, Xu X, Zhao J (2015) State transitions and fluorescence quenching in the cyanobacterium Synechocystis PCC 6803 in response to changes in light quality and intensity. J Photochem Photobiol B 142:169–177CrossRefGoogle Scholar
  81. 81.
    Shih PM, Zarzycki J, Niyogi KK, Kerfeld CA (2014) Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J Biol Chem 289:9493–9500CrossRefGoogle Scholar
  82. 82.
    Tang K-H, Tang YJ, Blankenship RE (2011) Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2:165CrossRefGoogle Scholar
  83. 83.
    Gong F, Cai Z, Li Y 2016 Synthetic biology for CO2 fixation. Sci China Life Sci 59:1106–1114 in pressGoogle Scholar
  84. 84.
    Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A 107:8889–8894CrossRefGoogle Scholar
  85. 85.
    Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1551–1553CrossRefGoogle Scholar
  86. 86.
    Erdrich P, Knoop H, Steuer R, Klamt S (2014) Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb Cell Factories 13:128CrossRefGoogle Scholar
  87. 87.
    Mueller TJ, Berla BM, Pakrasi HB, Maranas CD (2013) Rapid construction of metabolic models for a family of cyanobacteria using a multiple source annotation workflow. BMC Syst Biol 7:142–142CrossRefGoogle Scholar
  88. 88.
    Gudmundsson S, Nogales J (2015) Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. Mol BioSyst 11:60–70CrossRefGoogle Scholar
  89. 89.
    Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109:2678–2683CrossRefGoogle Scholar
  90. 90.
    Kaczmarzyk D, Cengic I, Yao L, Hudson EP (2018) Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 45:59–66CrossRefGoogle Scholar
  91. 91.
    Angermayr SA, Hellingwerf KJ (2013) On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories. J Phys Chem B 117:11169–11175CrossRefGoogle Scholar
  92. 92.
    Zhou J, Zhang H, Meng H, Zhu Y, Bao G, Zhang Y, Li Y, Ma Y (2014) Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep 4:4500CrossRefGoogle Scholar
  93. 93.
    Markley AL, Begemann MB, Clarke RE, Gordon GC, Pfleger BF (2015) Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth Biol 4:595–603CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
  2. 2.School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations