Advertisement

Synthetic Biology Approaches to the Sustainable Production of p-Coumaric Acid and Its Derivatives in Cyanobacteria

  • Yong Xue
  • Qingfang HeEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1080)

Abstract

The photosynthetic cyanobacteria are promising candidates for the sustainable production of a plethora of plant secondary metabolites, which are beneficial to human health but are difficult to produce and purify in other systems. This chapter focuses on genetic engineering of Synechocystis PCC 6803 for production of p-coumaric acid and its derivatives. Cyanobacterial engineering approaches are briefly reviewed. Strategies to increase production yield are discussed, including codon optimization of genes expressing enzymatic proteins and a laccase-coding gene knockout from Synechocystis genome which degrades polyphenols.

Keywords

Secondary metabolites Phenylpropanoid p-Coumaric acid Caffeic acid Cyanobacteria Laccase P450 proteins 

References

  1. 1.
    Afreen S, Shamsi TN, Baig MA, Ahmad N, Fatima S, Qureshi MI, Hassan MI, Fatma T (2017) A novel multicopper oxidase (laccase) from cyanobacteria: purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS One 12(4). doi:ARTN:e0175144.  https://doi.org/10.1371/journal.pone.0175144
  2. 2.
    Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616.  https://doi.org/10.1038/nbt1083 CrossRefPubMedGoogle Scholar
  3. 3.
    Angermayr SA, Paszota M, Hellingwerf KJ (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 78(19):7098–7106.  https://doi.org/10.1128/AEM.01587-12 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Beekwilder J, Wolswinkel R, Jonker H, Hall R, de Vos CH, Bovy A (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72(8):5670–5672.  https://doi.org/10.1128/AEM.00609-06 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Begemann MB, Zess EK, Walters EM, Schmitt EF, Markley AL, Pfleger BF (2013) An organic acid based counter selection system for cyanobacteria. PLoS One 8(10):e76594.  https://doi.org/10.1371/journal.pone.0076594 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7(1):71–86.  https://doi.org/10.1093/mp/sst134 CrossRefPubMedGoogle Scholar
  7. 7.
    Berner M, Krug D, Bihlmaier C, Vente A, Muller R, Bechthold A (2006) Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J Bacteriol 188(7):2666–2673.  https://doi.org/10.1128/Jb.188.7.2666-2673.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5(2–3):293–308.  https://doi.org/10.1007/s11101-006-9040-2 CrossRefGoogle Scholar
  9. 9.
    Cassier-Chauvat C, Veaudor T, Chauvat F (2016) Comparative genomics of DNA recombination and repair in cyanobacteria: biotechnological implications. Front Microbiol 7:1809.  https://doi.org/10.3389/fmicb.2016.01809 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chao PC, Hsu CC, Yin MC (2009) Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab (Lond) 6:33.  https://doi.org/10.1186/1743-7075-6-33 CrossRefGoogle Scholar
  11. 11.
    Chen S, Glawischnig E, Jorgensen K, Naur P, Jorgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33(5):923–937.  https://doi.org/10.1046/j.1365-313X.2003.01679.x CrossRefPubMedGoogle Scholar
  12. 12.
    Childs RE, Bardsley WG (1975) The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:93–103CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Claus H (2004) Laccases: structure, reactions, distribution. Micron 35(1–2):93–96.  https://doi.org/10.1016/j.micron.2003.10.029 CrossRefPubMedGoogle Scholar
  14. 14.
    Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, Gould SB, Goremykin VV, Rippka R, Tandeau de Marsac N, Gugger M, Lockhart PJ, Allen JF, Brune I, Maus I, Puhler A, Martin WF (2013) Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol 5(1):31–44.  https://doi.org/10.1093/gbe/evs117 CrossRefPubMedGoogle Scholar
  15. 15.
    Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21.  https://doi.org/10.3389/fbioe.2014.00021 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    de la Lastra CA, Villegas I (2005) Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res 49(5):405–430.  https://doi.org/10.1002/mnfr.200500022 CrossRefPubMedGoogle Scholar
  17. 17.
    Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2(8):857.  https://doi.org/10.1039/b811937f CrossRefGoogle Scholar
  18. 18.
    Dixon RA (2001) Natural products and plant disease resistance. Nature 411(6839):843–847.  https://doi.org/10.1038/35081178 CrossRefPubMedGoogle Scholar
  19. 19.
    Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1(6):171–178.  https://doi.org/10.1016/1360-1385(96)10019-4 CrossRefGoogle Scholar
  20. 20.
    Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103.  https://doi.org/10.1016/j.tibtech.2010.12.003 CrossRefPubMedGoogle Scholar
  21. 21.
    Duthie G, Crozier A (2000) Plant-derived phenolic antioxidants. Curr Opin Lipidol 11(1):43–47CrossRefPubMedGoogle Scholar
  22. 22.
    Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754CrossRefPubMedGoogle Scholar
  23. 23.
    Elhai J, Wolk CP (1990) Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. EMBO J 9(10):3379PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fouet A, Arnaud M, Klier A, Rapoport G (1984) Characterization of the precursor form of the exocellular levansucrase from Bacillus subtilis. Biochem Biophys Res Commun 119(2):795–800CrossRefPubMedGoogle Scholar
  25. 25.
    George HJ, Litalien JJ, Pilacinski WP, Glassman DL, Krzyzek RA (1985) High-level expression in Escherichia-Coli of biologically-active bovine growth-hormone. DNA J Mol Cell Biol 4(4):273–281.  https://doi.org/10.1089/dna.1985.4.273 CrossRefGoogle Scholar
  26. 26.
    Gescher A (2004) Polyphenolic phytochemicals versus non-steroidal anti-inflammatory drugs: which are better cancer chemopreventive agents? J Chemother 16(Suppl 4):3–6.  https://doi.org/10.1179/joc.2004.16.Supplement-1.3 CrossRefPubMedGoogle Scholar
  27. 27.
    Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3(1):1–26CrossRefGoogle Scholar
  28. 28.
    Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 569(1–2):101–110.  https://doi.org/10.1016/j.mrfmmm.2004.04.021 CrossRefPubMedGoogle Scholar
  29. 29.
    Gordeziani M, Varazi T, Pruidze M (2016) Structural–functional organization of cytochrome P450 containing monooxygenase and some aspects of modeling. Ann Agrar Sci 14(2):82–94CrossRefGoogle Scholar
  30. 30.
    Griese M, Lange C, Soppa J (2011) Ploidy in cyanobacteria. FEMS Microbiol Lett 323(2):124–131.  https://doi.org/10.1111/j.1574-6968.2011.02368.x CrossRefPubMedGoogle Scholar
  31. 31.
    Gulcin I (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217(2–3):213–220.  https://doi.org/10.1016/j.tox.2005.09.011 CrossRefPubMedGoogle Scholar
  32. 32.
    Hamilton AC (2004) Medicinal plants, conservation and livelihoods. Biodivers Conserv 13(8):1477–1517.  https://doi.org/10.1023/B:Bioc.0000021333.23413.42 CrossRefGoogle Scholar
  33. 33.
    Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001) Cytochrome p450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276(14):11078–11085.  https://doi.org/10.1074/jbc.M010123200 CrossRefPubMedGoogle Scholar
  34. 34.
    Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4(9):564–573.  https://doi.org/10.1038/nchembio.105 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. Transgenic Microalgae Green Cell Factories 616:46–53.  https://doi.org/10.1007/978-0-387-75532-8_5 CrossRefGoogle Scholar
  36. 36.
    Hu P, Borglin S, Kamennaya NA, Chen L, Park H, Mahoney L, Kijac A, Shan G, Chavarria KL, Zhang CM, Quinn NWT, Wemmer D, Holman HY, Jansson C (2013) Metabolic phenotyping of the cyanobacterium Synechocystis 6803 engineered for production of alkanes and free fatty acids. Appl Energy 102:850–859.  https://doi.org/10.1016/j.apenergy.2012.08.047 CrossRefGoogle Scholar
  37. 37.
    Hu XY, Shi QW, Yang T, Jackowski G (1996) Specific replacement of consecutive AGG codons results in high-level expression of human cardiac troponin T in Escherichia coli. Protein Expr Purif 7(3):289–293.  https://doi.org/10.1006/prep.1996.0041 CrossRefPubMedGoogle Scholar
  38. 38.
    Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593.  https://doi.org/10.1093/nar/gkq164 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hullo M-F, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183(18):5426–5430.  https://doi.org/10.1128/Jb.183.18.5426-5430.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hung CH, Endo K, Kobayashi K, Nakamura Y, Wada H (2015) Characterization of Chlamydomonas reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp PCC 6803. Front Microbiol 6:842.  https://doi.org/10.3389/fmicb.2015.00842 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ippen-Ihler K, Minkley E Jr (1986) The conjugation system of F, the fertility factor of Escherichia coli. Annu Rev Genet 20(1):593–624.  https://doi.org/10.1146/annurev.ge.20.120186.003113 CrossRefPubMedGoogle Scholar
  42. 42.
    Jacobsen JH, Frigaard NU (2014) Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 21:60–70.  https://doi.org/10.1016/j.ymben.2013.11.004 CrossRefPubMedGoogle Scholar
  43. 43.
    Jia HY, Fan GS, Yan QJ, Liu YC, Yan Y, Jiang ZQ (2012) High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. J Mol Catal B Enzym 78:72–77.  https://doi.org/10.1016/j.molcatb.2012.02.009 CrossRefGoogle Scholar
  44. 44.
    Jindou S, Ito Y, Mito N, Uematsu K, Hosoda A, Tamura H (2014) Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes. ACS Synth Biol 3(7):487–496.  https://doi.org/10.1021/sb400197f CrossRefPubMedGoogle Scholar
  45. 45.
    Karakaya S (2004) Bioavailability of phenolic compounds. Crit Rev Food Sci Nutr 44(6):453–464.  https://doi.org/10.1080/10408690490886683 CrossRefPubMedGoogle Scholar
  46. 46.
    Ke N, Baudry J, Makris TM, Schuler MA, Sligar SG (2005) A retinoic acid binding cytochrome P450: CYP120A1 from Synechocystis sp. PCC 6803. Arch Biochem Biophys 436(1):110–120CrossRefPubMedGoogle Scholar
  47. 47.
    Khetkorn W, Incharoensakdi A, Lindblad P, Jantaro S (2016) Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp PCC 6803 by overexpression of its native biosynthetic genes. Bioresour Technol 214:761–768.  https://doi.org/10.1016/j.biortech.2016.05.014 CrossRefPubMedGoogle Scholar
  48. 48.
    Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M (2014) Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J Biotechnol 185(20):1–7.  https://doi.org/10.1016/j.jbiotec.2014.05.025 CrossRefPubMedGoogle Scholar
  49. 49.
    Kojima M, Takeuchi W (1989) Detection and characterization of p-coumaric acid hydroxylase in mung bean, Vigna mungo, seedlings. J Biochem 105(2):265–270CrossRefPubMedGoogle Scholar
  50. 50.
    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(Suppl 9B):71S–88SCrossRefPubMedGoogle Scholar
  51. 51.
    Kudoh K, Kawano Y, Hotta S, Sekine M, Watanabe T, Ihara M (2014) Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis. J Biosci Bioeng 118(1):20–28.  https://doi.org/10.1016/j.jbiosc.2013.12.018 CrossRefPubMedGoogle Scholar
  52. 52.
    Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108.  https://doi.org/10.1016/j.ymben.2013.09.007 CrossRefPubMedGoogle Scholar
  53. 53.
    Labarre J, Chauvat F, Thuriaux P (1989) Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 171(6):3449–3457CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66(1):64–72CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee KH (1999) Novel antitumor agents from higher plants. Med Res Rev 19(6):569–596CrossRefPubMedGoogle Scholar
  56. 56.
    Lin Y, Yan Y (2012) Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb Cell Factories 11:42.  https://doi.org/10.1186/1475-2859-11-42 CrossRefGoogle Scholar
  57. 57.
    Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79.  https://doi.org/10.1016/j.ymben.2009.10.001 CrossRefPubMedGoogle Scholar
  58. 58.
    Lisov A, Zavarzina A, Zavarzin A, Demin V, Leontievsky A (2012) Dimeric and monomeric laccases of soil-stabilizing lichen Solorina crocea: purification, properties and reactions with humic acids. Soil Biol Biochem 45:161–167.  https://doi.org/10.1016/j.soilbio.2011.11.004 CrossRefGoogle Scholar
  59. 59.
    Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802.  https://doi.org/10.1038/nbt833 CrossRefPubMedGoogle Scholar
  60. 60.
    Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28(1):292CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ng W-O, Zentella R, Wang Y, Taylor J-SA, Pakrasi HB (2000) phrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutane-pyrimidine-dimer-specific DNA photolyase. Arch Microbiol 173(5–6):412–417.  https://doi.org/10.1007/s002030000164 CrossRefPubMedGoogle Scholar
  62. 62.
    Palanisami S, Saha SK, Lakshmanan U (2010) Laccase and polyphenol oxidase activities of marine cyanobacteria: a study with poly R-478 decolourization. World J Microbiol Biotechnol 26(1):63–69.  https://doi.org/10.1007/s11274-009-0143-y CrossRefGoogle Scholar
  63. 63.
    Park JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim KA, Chung SJ, Paik SY, Oh HY (2004) Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immunopharmacol 4(3):429–436.  https://doi.org/10.1016/j.intimp.2004.01.013 CrossRefPubMedGoogle Scholar
  64. 64.
    Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV (2011) Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 349(1–2):11–19.  https://doi.org/10.1007/s11010-010-0655-7 CrossRefGoogle Scholar
  65. 65.
    Qi QG, Hao M, Ng WO, Slater SC, Baszis SR, Weiss JD, Valentin HE (2005) Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway. Appl Environ Microbiol 71(10):5678–5684.  https://doi.org/10.1128/Aem.71.10.5678-5684.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rosler J, Krekel F, Amrhein N, Schmid J (1997) Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol 113(1):175–179CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13(4):392–400.  https://doi.org/10.1016/j.ymben.2011.02.002 CrossRefPubMedGoogle Scholar
  68. 68.
    Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646CrossRefPubMedGoogle Scholar
  69. 69.
    Sharma KK, Kuhad RC (2008) Laccase: enzyme revisited and function redefined. Indian J Microbiol 48(3):309–316.  https://doi.org/10.1007/s12088-008-0028-z CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Takahama K, Matsuoka M, Nagahama K, Ogawa T (2003) Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J Biosci Bioeng 95(3):302–305.  https://doi.org/10.1016/s1389-1723(03)80034-8 CrossRefPubMedGoogle Scholar
  71. 71.
    Thiel T, Peter Wolk C (1987) Conjugal transfer of plasmids to cyanobacteria. Methods Enzymol 153:232–243CrossRefPubMedGoogle Scholar
  72. 72.
    Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140(1):19–26CrossRefGoogle Scholar
  73. 73.
    Veetil VP, Angermayr SA, Hellingwerf KJ (2017) Ethylene production with engineered Synechocystis sp PCC 6803 strains. Microb Cell Factories 16(1):34.  https://doi.org/10.1186/s12934-017-0645-5 CrossRefGoogle Scholar
  74. 74.
    Vermaas W (1996) Molecular genetics of the cyanobacterium Synechocystis sp. PCC 6803: principles and possible biotechnology applications. J Appl Phycol 8(4–5):263–273.  https://doi.org/10.1007/bf02178569 CrossRefGoogle Scholar
  75. 75.
    Viola S, Rühle T, Leister D (2014) A single vector-based strategy for marker-less gene replacement in Synechocystis sp. PCC 6803. Microb Cell Factories 13(1):1–12.  https://doi.org/10.1186/1475-2859-13-4 CrossRefGoogle Scholar
  76. 76.
    Xue Y, Zhang Y, Cheng D, Daddy S, He Q (2014) Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid. Proc Natl Acad Sci U S A 111(26):9449–9454.  https://doi.org/10.1073/pnas.1323725111 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Xue Y, Zhang Y, Grace S, He Q (2013) Functional expression of an Arabidopsis p450 enzyme, p-coumarate-3-hydroxylase, in the cyanobacterium Synechocystis PCC 6803 for the biosynthesis of caffeic acid. J Appl Phycol 26(1):219–226.  https://doi.org/10.1007/s10811-013-0113-5 CrossRefGoogle Scholar
  78. 78.
    Yang JK, Liu LY, Dai JH, Li Q (2013) De novo design and synthesis of Candida antarctica lipase B gene and alpha-factor leads to high-level expression in Pichia pastoris. PLoS One 8(1):e53939.  https://doi.org/10.1371/journal.pone.0053939 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yao L, Qi FX, Tan XM, Lu XF (2014) Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels 7:94.  https://doi.org/10.1186/1754-6834-7-94 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Yoshimoto M, Kurata-Azuma R, Fujii M, Hou DX, Ikeda K, Yoshidome T, Osako M (2005) Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives. Biosci Biotechnol Biochem 69(9):1777–1781. JST.JSTAGE/bbb/69.1777 [pii]Google Scholar
  81. 81.
    Yu P, Yan Y, Gu Q, Wang XY (2013a) Codon optimisation improves the expression of Trichoderma viride sp. endochitinase in Pichia pastoris. Sci Rep Uk 3:3043.  https://doi.org/10.1038/srep03043 CrossRefGoogle Scholar
  82. 82.
    Yu Y, You L, Liu D, Hollinshead W, Tang YJ, Zhang F (2013b) Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Mar Drugs 11(8):2894–2916.  https://doi.org/10.3390/md11082894 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhou J, Zhang HF, Meng HK, Zhu Y, Bao GH, Zhang YP, Li Y, Ma YH (2014) Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep Uk 4:4500.  https://doi.org/10.1038/srep04500 CrossRefGoogle Scholar
  84. 84.
    Zolotukhin S, Potter M, Hauswirth WW, Guy J, Muzyczka N (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70(7):4646–4654PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Microbiology, Center for Food Safety and Applied NutritionFood and Drug AdministrationCollege ParkUSA
  2. 2.Department of BiologyUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations