Advertisement

Talking Through Chemical Languages: Quorum Sensing and Bacterial Communication

  • Mohini Mohan Konai
  • Geetika Dhanda
  • Jayanta Haldar
Chapter

Abstract

Bacteria constitute a large domain of prokaryotic microorganisms which have been cohabiting with us for a very long time. Nevertheless, understanding them is a magnificent task. Communication among bacteria, both inter-species and intra-species constitutes a highly specific but complicated process known as ‘Quorum sensing’. Many essential group behaviours (such as bioluminescence, virulence, swarming, nodulation, biofilm formation and many more) in bacterial population are guided by quorum sensing which involves production of molecules, acting as signals. Recognition of the signals results in gene expression, which ultimately regulates the collective behaviour beneficial for bacterial survival. The signalling molecules are different for Gram-positive and Gram-negative bacteria. In this chapter, we have discussed various classes of signalling molecules, their production, recognition and signal transduction.

Keywords

Acyl homoserine lactone Autoinducing peptide Signal production Signal recognition Signal transduction Quorum sensing 

Abbreviations

3-hydroxy-7-cis-C14-HSL

N-(3-hydroxy- 7-cis-tetradecenoyl)-L-homoserine lactone,

3-oxo-C10-HSL

N-3-oxo-decanoyl-L-homoserine lactone,

3-oxo-C12-HSL

N-3-oxo-dodecanoyl-L-homoserine lactone,

3-oxo-C6-HSL

N-3-oxo-hexanoyl-L- homoserine lactone,

3-oxo-C8-HSL

N-3-oxo-octanoyl-L-homoserine lactone,

7-cis-C14-HSL

N-(7-cis-tetradecenoyl)-L-homoserine lactone,

ACP

Acyl carrier protein,

agr

Accessory gene regulator,

AHL

Acyl homoserine lactone,

AI-2

Autoinducer 2,

AIP

Autoinducing peptide,

AMR

Antimicrobial resistance,

C10-HSL

N-decanoyl-L-homoserine lactone,

C12-HSL

N-dodecanoyl-L-homoserine lactone,

C14-HSL

N-tetradecanoyl-L-homoserine lactone,

C4-HSL

N-butanoyl-L-homoserine lactone,

C6-HSL

N-hexanoyl-L-homoserine lactone,

C8-HSL

N-octanoyl-L-homoserine lactone,

CAI-I

Cholera autoinducer 1,

DPD

4,5-dihydroxy-2,3-pentanedione,

DPO

3,5-dimethylpyrazin-2-ol,

DSF

Diffusible signal factor,

HPK

Histidine protein kinase,

HSL

Homoserine lactone,

PQS

Pseudomonas quinolone signal

qrr

Quorum regulatory,

QS

Quorum sensing,

RR

response regulator,

SAM

S- adenosylmethionine

References

  1. Atkinson S, Throup JP, Stewart GS, Williams P (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277.  https://doi.org/10.1046/j.1365-2958.1999.01578.xCrossRefPubMedGoogle Scholar
  2. Autret N, Raynaud C, Dubail I, Berche P, Charbit A (2003) Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun 71:4463–4471.  https://doi.org/10.1128/IAI.71.8.4463–4471.2003CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P (1992) N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004 doi: Not availableCrossRefPubMedPubMedCentralGoogle Scholar
  4. Bassler BL (2002) Small talk: cell-to-cell communication in bacteria. Cell 109:421–424 doi: Not availableCrossRefPubMedGoogle Scholar
  5. Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786 doi: Not availableCrossRefPubMedGoogle Scholar
  6. von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci U S A 95:7687–7692 doi: Not availableCrossRefGoogle Scholar
  7. Bottomley MJ, Muraglia E, Bazzo R, Carfì A (2007) Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem 282:13592–13600.  https://doi.org/10.1074/jbc.M700556200CrossRefPubMedGoogle Scholar
  8. Chen G, Swem LR, Swem DL, Stauff DL, O’Loughlin CT, Jeffrey PD, Bassler BL, Hughson FM (2011) A strategy for antagonizing quorum sensing. Mol Cell 42:199–209.  https://doi.org/10.1016/j.molcel.2011.04.003CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Williams P, Stewart GS (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180:4435–4441 doi: Not availablePubMedPubMedCentralGoogle Scholar
  10. Clewell DB, Francia MV, Flannagan SE, An FY (2002) Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 48:193–201.  https://doi.org/10.1016/S0147-619X(02)00113-0CrossRefPubMedGoogle Scholar
  11. Cooksley CM, Davis IJ, Winzer K, Chan WC, Peck MW, Minton NP (2010) Regulation of neurotoxin production and sporulation by a Putative agrBD signalling system in proteolytic Clostridium botulinum. Appl Environ Microbiol 76:4448–4460.  https://doi.org/10.1128/AEM.03038-09CrossRefPubMedPubMedCentralGoogle Scholar
  12. Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403.  https://doi.org/10.1128/JB.01214-08CrossRefPubMedGoogle Scholar
  13. Deng Y, Wu J, Eberl L, Zhang LH (2008) Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol 76:4675–4683.  https://doi.org/10.1128/AEM.00480-10CrossRefGoogle Scholar
  14. Deng Y, Wu J, Tao F, Zhang LH (2011) Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev 111:160–173.  https://doi.org/10.1021/cr100354fCrossRefPubMedGoogle Scholar
  15. Dufour P, Jarraud S, Vandenesch F, Greenland T, Novick RP, Bes M, Etienne J, Lina G (2002) High genetic variability of the agr locus in Staphylococcus species. J Bacteriol 184:1180–1186.  https://doi.org/10.1128/JB.184.4.1180-1186.2002CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136.  https://doi.org/10.1111/j.1365-2958.1996.tb02495.xCrossRefPubMedGoogle Scholar
  17. Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781 doi: Not availableCrossRefPubMedGoogle Scholar
  18. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299.  https://doi.org/10.1172/JCI20195CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fujii T, Ingham C, Nakayama J, Beerthuyzen M, Kunuki R, Molenaar D, Sturme M, Vaughan E, Kleerebezem M, de Vos W (2008) Two homologous Agr-like quorum-sensing systems cooperatively control adherence, cell morphology, and cell viability properties in Lactobacillus plantarum WCFS1. J Bacteriol 190:7655–7665.  https://doi.org/10.1128/JB.01489-07CrossRefPubMedPubMedCentralGoogle Scholar
  20. Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67.  https://doi.org/10.1021/cr100109tCrossRefPubMedGoogle Scholar
  21. Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154.  https://doi.org/10.1146/annurev.micro.091208.073214CrossRefPubMedPubMedCentralGoogle Scholar
  22. Givskov M, Eberl L, Molin S (1997) Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol Lett 148:115–122.  https://doi.org/10.1111/j.1574-6968.1997.tb10276.xCrossRefGoogle Scholar
  23. Glessner A, Smith RS, Iglewski BH, Robinson JB (1999) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol 181:1623–1629 doi: Not availablePubMedPubMedCentralGoogle Scholar
  24. Håvarstein LS, Coomaraswamy G, Morrison DA (1995) An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 92:11140–11144 doi: Not AvailableCrossRefPubMedPubMedCentralGoogle Scholar
  25. He YW, Wu J, Cha JS, Zhang LH (2010) Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10:187.  https://doi.org/10.1186/1471-2180-10-187CrossRefPubMedPubMedCentralGoogle Scholar
  26. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274.  https://doi.org/10.1111/j.1574-6976.2010.00247.xCrossRefPubMedGoogle Scholar
  27. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300–1307.  https://doi.org/10.1172/JCI20074CrossRefPubMedPubMedCentralGoogle Scholar
  28. Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883–886.  https://doi.org/10.1038/nature06284CrossRefPubMedGoogle Scholar
  29. Huang TP, Lee Wong AC (2007) Extracellular fatty acids facilitate flagella-independent translocation by Stenotrophomonas maltophilia. Res Microbiol 158:702–711.  https://doi.org/10.1016/j.resmic.2007.09.002CrossRefPubMedGoogle Scholar
  30. Hudaiberdiev S, Choudhary KS, Vera Alvarez R, Gelencsér Z, Ligeti B, Lamba D, Pongor S (2015) Census of solo LuxR genes in prokaryotic genomes. Front Cell Infect Microbiol 5:20.  https://doi.org/10.3389/fcimb.2015.00020CrossRefPubMedPubMedCentralGoogle Scholar
  31. Janzon L, Löfdahl S, Arvidson S (1989) Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol Gen Genet 219:480–485 doi: Not AvailableCrossRefPubMedGoogle Scholar
  32. Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276:2027–2030 doi: Not AvailableCrossRefPubMedGoogle Scholar
  33. Kaur G, Rajesh S, Adline Princy S (2015) Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks. Indian J Microbiol 55(4):349–356Google Scholar
  34. Koul S, Kalia VC (2017) Multiplicity of Quorum Quenching Enzymes: A Potential Mechanism to Limit Quorum Sensing Bacterial Population. Indian J Microbiol 57(1):100–108Google Scholar
  35. Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria. Indian J Microbiol 56(1):1–18Google Scholar
  36. Lazazzera BA (2001) The intracellular function of extracellular signalling peptides. Peptides 22:1519–1527 doi: Not AvailableCrossRefPubMedGoogle Scholar
  37. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41.  https://doi.org/10.1007/s13238-014-0100-xCrossRefPubMedGoogle Scholar
  38. Lee JH, Lequette Y, Greenberg EP (2006) Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 59:602–609.  https://doi.org/10.1111/j.1365-2958.2005.04960.xCrossRefPubMedGoogle Scholar
  39. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y, Williams P, Zhang LH (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9:339–343.  https://doi.org/10.1038/nchembio.1225CrossRefPubMedGoogle Scholar
  40. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756 doi: Not availablePubMedPubMedCentralGoogle Scholar
  41. Lina G, Jarraud S, Ji G, Greenland T, Pedraza A, Etienne J, Novick RP, Vandenesch F (1998) Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol Microbiol 28:655–662.  https://doi.org/10.1046/j.1365-2958.1998.00830.xCrossRefPubMedGoogle Scholar
  42. Lintz MJ, Oinuma K, Wysoczynski CL, Greenberg EP, Churchill ME (2011) Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci U S A 108:15763–15768.  https://doi.org/10.1073/pnas.1112398108CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lupas A (1996) Prediction and analysis of coiled-coil structures. Methods Enzymol 266:513–525 doi: Not AvailableCrossRefPubMedGoogle Scholar
  44. Lupp C, Ruby EG (2005) Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J Bacteriol 187:3620–3629.  https://doi.org/10.1128/JB.187.11.3620-3629.2005CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lyon GJ, Mayville P, Muir TW, Novick RP (2000) Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase. AgrC Proc Natl Acad Sci U S A 97:13330–13335.  https://doi.org/10.1073/pnas.97.24.13330CrossRefPubMedGoogle Scholar
  46. Lyon GJ, Wright JS, Muir TW, Novick RP (2002) Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41:10095–10104.  https://doi.org/10.1021/bi026049uCrossRefPubMedGoogle Scholar
  47. Lyristis M, Bryant AE, Sloan J, Awad MM, Nisbet IT, Stevens DL, Rood JI (1994) Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol 12:761–777.  https://doi.org/10.1111/j.1365-2958.1994.tb01063.xCrossRefPubMedGoogle Scholar
  48. Mayville P, Ji G, Beavis R, Yang H, Goger M, Novick RP, Muir TW (1999) Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci U S A 96:1218–1223.  https://doi.org/10.1046/j.1365-2958.2001.02539.xCrossRefPubMedPubMedCentralGoogle Scholar
  49. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711.  https://doi.org/10.1099/00221287-143-12-3703CrossRefPubMedGoogle Scholar
  50. MDowell P, Affas Z, Reynolds C, Holden MT, Wood SJ, Saint S, Cockayne A, Hill PJ, Dodd CE, Bycroft BW, Chan WC, Williams P (2001) Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus. Mol Microbiol 41:503–512.  https://doi.org/10.1046/j.1365-2958.2001.02539.xCrossRefPubMedGoogle Scholar
  51. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15:677–687.  https://doi.org/10.1016/j.molcel.2004.07.020CrossRefPubMedGoogle Scholar
  52. Milton DL, Hardman A, Camara M, Chhabra SR, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone. J Bacteriol 179:3004–3012.  https://doi.org/10.1128/jb.179.9.3004-3012.1997CrossRefPubMedPubMedCentralGoogle Scholar
  53. Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, Moore L, O’Cathain A, Tinati T, Wight D, Baird J (2015) Process evaluation of complex interventions: Medical Research Council guidance. BMJ 350:h1258.  https://doi.org/10.1136/bmj.h1258CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, de Vos WM, Nagasawa H (2001) Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 41:145–154 doi: Not AvailableCrossRefPubMedGoogle Scholar
  55. Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29:1391–1405 doi: Not availableCrossRefPubMedGoogle Scholar
  56. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222.  https://doi.org/10.1146/annurev-genet-102108-134304CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ng WL, Perez LJ, Wei Y, Kraml C, Semmelhack MF, Bassler BL (2011) Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol Microbiol 79:1407–1417.  https://doi.org/10.1111/j.1365-2958.2011.07548.xCrossRefPubMedPubMedCentralGoogle Scholar
  58. Nishiguchi K, Nagata K, Tanokura M, Sonomoto K, Nakayama J (2009) Structure-Activity Relationship of Gelatinase Biosynthesis-Activating Pheromone of Enterococcus faecalis. J Bacteriol 191(2):641–650Google Scholar
  59. Novick RP, Geisinger E (2008) Quorum sensing in Staphylococci. Annu Rev Genet 42:541–564.  https://doi.org/10.1146/annurev.genet.42.110807.091640CrossRefPubMedGoogle Scholar
  60. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975 doi: Not AvailablePubMedPubMedCentralCrossRefGoogle Scholar
  61. Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248:446–458 doi: Not AvailableCrossRefPubMedGoogle Scholar
  62. Ohtani K, Yuan Y, Hassan S, Wang R, Wang Y, Shimizu T (2009) Virulence gene regulation by the agr system in Clostridium perfringens. J Bacteriol 191:3919–3927.  https://doi.org/10.1128/JB.01455-08CrossRefPubMedPubMedCentralGoogle Scholar
  63. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588.  https://doi.org/10.1038/nrmicro.2016.89CrossRefPubMedPubMedCentralGoogle Scholar
  64. Papenfort K, Silpe JE, Schramma KR, Cong JP, Seyedsayamdost MR, Bassler BL (2017) A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation.  https://doi.org/10.1038/nchembio.2336
  65. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130 doi: Not availableCrossRefPubMedGoogle Scholar
  66. Pereira H, Azevedo F, Rego A, Sousa MJ, Chaves SR, Côrte-Real M (2013) The protective role of yeast cathepsin D in acetic acid-induced apoptosis depends on ANT (Aac2p) but not on the voltage-dependent channel (Por1p). FEBS Lett 587:200–205.  https://doi.org/10.1016/j.febslet.2012.11.025CrossRefPubMedGoogle Scholar
  67. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234 doi: Not AvailableCrossRefPubMedPubMedCentralGoogle Scholar
  68. Pierson LS 3rd, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J Bacteriol 176(13):3966–3974 doi: Not availableCrossRefPubMedPubMedCentralGoogle Scholar
  69. Piper KR, Beck Von Bodman S, Hwang I, Farrand SK (1999) Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium. Mol Microbiol 32:1077–1089 doi: Not availableCrossRefPubMedGoogle Scholar
  70. Pirhonen M, Flego D, Heikinheimo R, Palva ET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476 doi: Not availablePubMedPubMedCentralCrossRefGoogle Scholar
  71. Puskas A, Greenberg EP, Kaplan S, Schaefer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537.  https://doi.org/10.1128/jb.179.23.7530-7537.1997CrossRefPubMedPubMedCentralGoogle Scholar
  72. Qin X, Singh KV, Weinstock GM, Murray BE (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586 doi: Not AvailableCrossRefPubMedPubMedCentralGoogle Scholar
  73. Qiu R, Pei W, Zhang L, Lin J, Ji G (2005) Identification of the putative staphylococcal AgrB catalytic residues involving the proteolytic cleavage of AgrD to generate autoinducing peptide. J Biol Chem 280:16695–16704.  https://doi.org/10.1074/jbc.M411372200CrossRefPubMedGoogle Scholar
  74. Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161.  https://doi.org/10.1016/j.ijmm.2006.02.005CrossRefPubMedGoogle Scholar
  75. Riedel CU, Monk IR, Casey PG, Waidmann MS, Gahan CG, Hill C (2009) AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 71:1177–1189.  https://doi.org/10.1111/j.1365-2958.2008.06589.xCrossRefPubMedGoogle Scholar
  76. Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM (2015) The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11:e1004986.  https://doi.org/10.1371/journal.ppat.1004986CrossRefPubMedPubMedCentralGoogle Scholar
  77. Saenz HL, Augsburger V, Vuong C, Jack RW, Götz F, Otto M (2000) Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone. Arch Microbiol 174:452–455.  https://doi.org/10.1007/s002030000223CrossRefPubMedGoogle Scholar
  78. Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Allan Downie J (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1149–1163.  https://doi.org/10.1098/rstb.2007.2041CrossRefGoogle Scholar
  79. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599.  https://doi.org/10.1038/nature07088CrossRefPubMedGoogle Scholar
  80. Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480.  https://doi.org/10.1101/gad.899601CrossRefPubMedGoogle Scholar
  81. Sidote DJ, Barbieri CM, Wu T, Stock AM (2008) Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16:727–735.  https://doi.org/10.1016/j.str.2008.02.011CrossRefPubMedPubMedCentralGoogle Scholar
  82. Slamti L, Lereclus D (2002) A cell-cell signalling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–4559.  https://doi.org/10.1093/emboj/cdf450CrossRefPubMedPubMedCentralGoogle Scholar
  83. Smith D, Wang JH, Swatton JE, Davenport P, Price B, Mikkelsen H, Stickland H, Nishikawa K, Gardiol N, Spring DR, Welch M (2006) Variations on a theme: diverse N-acyl homoserine lactone-mediated quorum sensing mechanisms in gram-negative bacteria. Sci Prog 89:167–211 doi: Not availableCrossRefPubMedGoogle Scholar
  84. Sturme MH, Nakayama J, Molenaar D, Murakami Y, Kunugi R, Fujii T, Vaughan EE, Kleerebezem M, de Vos WM (2005) An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol 187:5224–5235.  https://doi.org/10.1128/JB.187.15.5224-5235.2005CrossRefPubMedPubMedCentralGoogle Scholar
  85. Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signalling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:461–473.  https://doi.org/10.1016/j.cell.2008.06.023CrossRefPubMedPubMedCentralGoogle Scholar
  86. Swem LR, Swem DL, O’Loughlin CT, Gatmaitan R, Zhao B, Ulrich SM, Bassler BL (2009) A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell 35:143–153.  https://doi.org/10.1016/j.molcel.2009.05.029CrossRefPubMedPubMedCentralGoogle Scholar
  87. Swift S, Winson MK, Chan PF, Bainton NJ, Birdsall M, Reeves PJ, Rees CE, Chhabra SR, Hill PJ, Throup JP, Bycroft BW, Salmond GPC, Williams P, Stewart GSAB (1993) A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Mol Microbiol 10:511–520 doi: Not availableCrossRefPubMedGoogle Scholar
  88. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281 doi: Not availableCrossRefPubMedPubMedCentralGoogle Scholar
  89. Tal-Gan Y, Ivancic M, Cornilescu G, Cornilescu CC, Blackwell HE (2013) Structural characterization of native autoinducing peptides and abiotic analogues reveals key features essential for activation and inhibition of an AgrC quorum sensing receptor in Staphylococcus aureus. J Am Chem Soc 135:18436–18444.  https://doi.org/10.1021/ja407533eCrossRefPubMedGoogle Scholar
  90. Tal-Gan Y, Ivancic M, Cornilescu G, Blackwell HE (2016) Characterization of structural elements in native autoinducing peptides and non-native analogues that permit the differential modulation of AgrC-type quorum sensing receptors in Staphylococcus aureus. Org Biomol Chem 14:113–121.  https://doi.org/10.1039/c5ob01735aCrossRefPubMedGoogle Scholar
  91. Thoendel M, Horswill AR (2009) Identification of Staphylococcus aureus AgrD residues required for autoinducing peptide biosynthesis. J Biol Chem 284:21828–21838.  https://doi.org/10.1074/jbc.M109.031757CrossRefPubMedPubMedCentralGoogle Scholar
  92. Thoendel M, Horswill AR (2010) Biosynthesis of peptide signals in gram-positive bacteria. Adv Appl Microbiol 71:91–112.  https://doi.org/10.1016/S0065-2164(10)71004-2CrossRefPubMedGoogle Scholar
  93. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signalling in the staphylococci. Chem Rev 111:117–151.  https://doi.org/10.1021/cr100370nCrossRefPubMedGoogle Scholar
  94. Throup JP, Camara M, Briggs GS, Winson MK, Chhabra SR, Bycroft BW, Williams P, Stewart GS (1995) Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two N-acylhomoserine lactone signal molecules. Mol Microbiol 17:345–356.  https://doi.org/10.1111/j.1365-2958.1995.mmi_17020345.xCrossRefPubMedGoogle Scholar
  95. Tusnády GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506.  https://doi.org/10.1006/jmbi.1998.2107CrossRefPubMedGoogle Scholar
  96. Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393–4401 doi: Not availableCrossRefPubMedPubMedCentralGoogle Scholar
  97. Vidal JE, Chen J, Li J, McClane BA (2009) Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory locus in Clostridium perfringens strain 13. PLoS One 4:e6232.  https://doi.org/10.1371/journal.pone.0006232CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L, Fang RX, Zhang LH (2004) A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912.  https://doi.org/10.1046/j.1365-2958.2003.03883.xCrossRefPubMedGoogle Scholar
  99. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404.  https://doi.org/10.1111/j.1574-6976.2001.tb00583.xCrossRefPubMedGoogle Scholar
  100. Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Phil Trans R Soc B 362:1119–1134.  https://doi.org/10.1098/rstb.2007.2039CrossRefPubMedGoogle Scholar
  101. Wood DW, Gong F, Daykin MM, Williams P, Pierson LS 3rd (1997) N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179(24):7663–7670 doi: Not availableCrossRefPubMedPubMedCentralGoogle Scholar
  102. Wuster A, Babu MM (2008) Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J Bacteriol 190:743–746.  https://doi.org/10.1128/JB.01135-07CrossRefPubMedGoogle Scholar
  103. Yang T, Tal-Gan Y, Paharik AE, Horswill AR, Blackwell HE (2016) Structure-function analyses of a Staphylococcus epidermidis autoinducing peptide reveals motifs critical for AgrC-type receptor modulation. ACS Chem Biol 11:1982–1991.  https://doi.org/10.1021/acschembio.6b00120CrossRefPubMedPubMedCentralGoogle Scholar
  104. Zhang L, Gray L, Novick RP, Ji G (2002) Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcus aureus. J Biol Chem 277:34736–34742.  https://doi.org/10.1074/jbc.M205367200CrossRefPubMedGoogle Scholar
  105. Zhou L, Zhang LH, Cámara M, He YW (2017) The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends Microbiol 25:293–303.  https://doi.org/10.1016/j.tim.2016.11.013CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mohini Mohan Konai
    • 1
  • Geetika Dhanda
    • 1
  • Jayanta Haldar
    • 1
  1. 1.Antimicrobial Research Laboratory, New Chemistry UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia

Personalised recommendations