Advertisement

Novel Super-Regulators of Quorum Sensing in Pseudomonas aeruginosa

  • Chuanmin Zhou
  • Min Wu
Chapter

Abstract

Quorum sensing (QS) systems are a vital network in Pseudomonas aeruginosa for regulating cell to cell communication. Many of this bacterial virulence factors are controlled by or associated with QS. As QS system may directly regulate up to 10% genes of P. aeruginosa, this system is of fundamental importance in bacterial physiology and pathogenesis. However, it is still unclear how the QS genes regulate their targets and how QS circuits are modulated by other regulators. Here, we review how a series of recently identified critical regulators, named “super-regulators” in P. aeruginosa, participate in QS signaling to modulate the expression of its effectors.

Keywords

Quorum sensing Pseudomonas aeruginosa Two-component systems; 

Abbreviation

Bfm

Biofilm maturation

CdpR

ClpAP-degradation and pathogenicity Regulatorregulator

QscR

Quorum-sensing control repressor

QsrO

QS-repressing ORF

RpoN

RNA polymerase sigma-54 factor

RpoS

RNA polymerase, sigma S

VqsM

Virulence and QS modulator

VqsR

Virulence and quorum-sensing regulator

References

  1. Albus AM, Pesci EC, Runyen-Janecky LJ, West SE, Iglewski BH (1997) Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3928–3935CrossRefGoogle Scholar
  2. Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20.  https://doi.org/10.1093/nar/gks1039CrossRefPubMedGoogle Scholar
  3. Branny P, Pearson JP, Pesci EC, Kohler T, Iglewski BH, Van Delden C (2001) Inhibition of quorum sensing by a Pseudomonas aeruginosa dksA homologue. J Bacteriol 183:1531–1539.  https://doi.org/10.1128/JB.183.5.1531-1539.2001CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cai Z, Liu Y, Chen Y, Yam JK, Chew SC, Chua SL, Wang K, Givskov M, Yang L (2015) RpoN regulates virulence factors of Pseudomonas aeruginosa via modulating the PqsR quorum sensing regulator. Int J Mol Sci 16:28311–28319.  https://doi.org/10.3390/ijms161226103CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cao Q, Wang Y, Chen F, Xia Y, Lou J, Zhang X, Yang N, Sun X, Zhang Q, Zhuo C, Huang X, Deng X, Yang CG, Ye Y, Zhao J, Wu M, Lan L (2014) A novel signal transduction pathway that modulates rhl quorum sensing and bacterial virulence in Pseudomonas aeruginosa. PLoS Pathog 10:e1004340.  https://doi.org/10.1371/journal.ppat.1004340CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chugani S, Greenberg EP (2007) The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog 42:29–35.  https://doi.org/10.1016/j.micpath.2006.10.004CrossRefPubMedGoogle Scholar
  7. Croda-Garcia G, Grosso-Becerra V, Gonzalez-Valdez A, Servin-Gonzalez L, Soberon-Chavez G (2011) Transcriptional regulation of Pseudomonas aeruginosa rhlR: role of the CRP orthologue Vfr (virulence factor regulator) and quorum-sensing regulators LasR and RhlR. Microbiology 157:2545–2555.  https://doi.org/10.1099/mic.0.050161-0CrossRefPubMedGoogle Scholar
  8. de Kievit T, Seed PC, Nezezon J, Passador L, Iglewski BH (1999) RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa. J Bacteriol 181:2175–2184PubMedPubMedCentralGoogle Scholar
  9. Dong YH, Zhang XF, Xu JL, Tan AT, Zhang LH (2005) VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa. Mol Microbiol 58:552–564.  https://doi.org/10.1111/j.1365-2958.2005.04851.xCrossRefPubMedGoogle Scholar
  10. Fan H, Dong Y, Wu D, Bowler MW, Zhang L, Song H (2013) QsIA disrupts LasR dimerization in antiactivation of bacterial quorum sensing. Proc Natl Acad Sci U S A 110:20765–20770.  https://doi.org/10.1073/pnas.1314415110CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000–3009CrossRefGoogle Scholar
  12. Hendrickson EL, Plotnikova J, Mahajan-Miklos S, Rahme LG, Ausubel FM (2001) Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J Bacteriol 183:7126–7134.  https://doi.org/10.1128/JB.183.24.7126-7134.2001CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815.  https://doi.org/10.1093/emboj/cdg366CrossRefPubMedPubMedCentralGoogle Scholar
  14. Heurlier K, Denervaud V, Pessi G, Reimmann C, Haas D (2003) Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 185:2227–2235.  https://doi.org/10.1128/JB.185.7.2227-2235.2003CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jude F, Kohler T, Branny P, Perron K, Mayer MP, Comte R, van Delden C (2003) Posttranscriptional control of quorum-sensing-dependent virulence genes by DksA in Pseudomonas aeruginosa. J Bacteriol 185:3558–3566.  https://doi.org/10.1128/JB.185.12.3558-3566.2003CrossRefPubMedPubMedCentralGoogle Scholar
  16. Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, Salunkhe P, Limpert AS, von Gotz F, Steinmetz I, Eberl L, Tummler B (2004) Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150:831–841.  https://doi.org/10.1099/mic.0.26906-0CrossRefPubMedGoogle Scholar
  17. Juhas M, Wiehlmann L, Salunkhe P, Lauber J, Buer J, Tummler B (2005) GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol Lett 242:287–295.  https://doi.org/10.1016/j.femsle.2004.11.020CrossRefPubMedGoogle Scholar
  18. Kang H, Gan J, Zhao J, Kong W, Zhang J, Zhu M, Li F, Song Y, Qin J, Liang H (2017) Crystal structure of Pseudomonas aeruginosa RsaL bound to promoter DNA reaffirms its role as a global regulator involved in quorum-sensing. Nucleic Acids Res 45:699–710.  https://doi.org/10.1093/nar/gkw954CrossRefPubMedGoogle Scholar
  19. Kay E, Humair B, Denervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033.  https://doi.org/10.1128/JB.00409-06CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim C, Kim J, Park HY, Park HJ, Lee JH, Kim CK, Yoon J (2008) Furanone derivatives as quorum-sensing antagonists of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 80:37–47.  https://doi.org/10.1007/s00253-008-1474-6CrossRefPubMedGoogle Scholar
  21. Kohler T, Ouertatani-Sakouhi H, Cosson P, van Delden C (2014) QsrO a novel regulator of quorum-sensing and virulence in Pseudomonas aeruginosa. PLoS One 9:e87814.  https://doi.org/10.1371/journal.pone.0087814CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ledgham F, Soscia C, Chakrabarty A, Lazdunski A, Foglino M (2003a) Global regulation in Pseudomonas aeruginosa: the regulatory protein AlgR2 (AlgQ) acts as a modulator of quorum sensing. Res Microbiol 154:207–213.  https://doi.org/10.1016/S0923-2508(03)00024-XCrossRefPubMedGoogle Scholar
  23. Ledgham F, Ventre I, Soscia C, Foglino M, Sturgis JN, Lazdunski A (2003b) Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol 48:199–210.  https://doi.org/10.1046/j.1365-2958.2003.03423.xCrossRefPubMedGoogle Scholar
  24. Lee JH, Lequette Y, Greenberg EP (2006) Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 59:602–609.  https://doi.org/10.1111/j.1365-2958.2005.04960.xCrossRefPubMedGoogle Scholar
  25. Li LL, Malone JE, Iglewski BH (2007) Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol 189:4367–4374.  https://doi.org/10.1128/JB.00007-07CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liang H, Deng X, Ji Q, Sun F, Shen T, He C (2012) The Pseudomonas aeruginosa global regulator VqsR directly inhibits QscR to control quorum-sensing and virulence gene expression. J Bacteriol 194:3098–3108.  https://doi.org/10.1128/JB.06679-11CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liang H, Deng X, Li X, Ye Y, Wu M (2014) Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa. Nucleic Acids Res 42:10307–10320.  https://doi.org/10.1093/nar/gku586CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060CrossRefGoogle Scholar
  29. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222.  https://doi.org/10.1128/CMR.15.2.194-222.2002CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mattmann ME, Blackwell HE (2010) Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J Org Chem 75:6737–6746.  https://doi.org/10.1021/jo101237eCrossRefPubMedPubMedCentralGoogle Scholar
  31. McInnis CE, Blackwell HE (2011) Thiolactone modulators of quorum sensing revealed through library design and screening. Bioorg Med Chem 19:4820–4828.  https://doi.org/10.1016/j.bmc.2011.06.071CrossRefPubMedPubMedCentralGoogle Scholar
  32. O’Callaghan J, Reen FJ, Adams C, O’Gara F (2011) Low oxygen induces the type III secretion system in Pseudomonas aeruginosa via modulation of the small RNAs rsmZ and rsmY. Microbiology 157:3417–3428.  https://doi.org/10.1099/mic.0.052050-0CrossRefPubMedGoogle Scholar
  33. Oinuma K, Greenberg EP (2011) Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR. J Bacteriol 193:421–428.  https://doi.org/10.1128/JB.01041-10CrossRefPubMedGoogle Scholar
  34. Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1226CrossRefGoogle Scholar
  35. Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT, Camara M, Haas D, Williams P (2001) The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 183:6676–6683.  https://doi.org/10.1128/JB.183.22.6676-6683.2001CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pugsley A (2008) The two-component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa. Mol Microbiol 69:780.  https://doi.org/10.1111/j.1365-2958.2008.06351.xCrossRefPubMedGoogle Scholar
  37. Rampioni G, Bertani I, Zennaro E, Polticelli F, Venturi V, Leoni L (2006) The quorum-sensing negative regulator RsaL of Pseudomonas aeruginosa binds to the lasI promoter. J Bacteriol 188:815–819.  https://doi.org/10.1128/JB.188.2.815-819.2006CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rampioni G, Schuster M, Greenberg EP, Zennaro E, Leoni L (2009) Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. FEMS Microbiol Lett 301:210–217.  https://doi.org/10.1111/j.1574-6968.2009.01817.xCrossRefPubMedGoogle Scholar
  39. Rodrigue A, Quentin Y, Lazdunski A, Mejean V, Foglino M (2000) Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8:498–504CrossRefGoogle Scholar
  40. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a0124727.  https://doi.org/10.1101/cshperspect.a012427CrossRefGoogle Scholar
  41. Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dotsch A, Hornischer K, Bruchmann S, Duvel J, Haussler S (2015) Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog 11:e1004744.  https://doi.org/10.1371/journal.ppat.1004744CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81.  https://doi.org/10.1016/j.ijmm.2006.01.036CrossRefPubMedGoogle Scholar
  43. Schuster M, Hawkins AC, Harwood CS, Greenberg EP (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985.  https://doi.org/10.1046/j.1365-2958.2003.03886.xCrossRefPubMedGoogle Scholar
  44. Seet Q, Zhang LH (2011) Anti-activator QslA defines the quorum sensing threshold and response in Pseudomonas aeruginosa. Mol Microbiol 80:951–965.  https://doi.org/10.1111/j.1365-2958.2011.07622.xCrossRefPubMedGoogle Scholar
  45. Siehnel R, Traxler B, An DD, Parsek MR, Schaefer AL, Singh PK (2010) A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 107:7916–7921.  https://doi.org/10.1073/pnas.0908511107CrossRefPubMedPubMedCentralGoogle Scholar
  46. Son MS, Matthews WJ Jr, Kang Y, Nguyen DT, Hoang TT (2007) In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 75:5313–5324.  https://doi.org/10.1128/IAI.01807-06CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sousa AM, Pereira MO (2014) Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs – a review. Pathogens 3:680–703.  https://doi.org/10.3390/pathogens3030680CrossRefPubMedPubMedCentralGoogle Scholar
  48. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215.  https://doi.org/10.1146/annurev.biochem.69.1.183CrossRefPubMedGoogle Scholar
  49. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964.  https://doi.org/10.1038/35023079CrossRefPubMedGoogle Scholar
  50. Studholme DJ, Buck M (2000) The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol Lett 186:1–9CrossRefGoogle Scholar
  51. Thompson LS, Webb JS, Rice SA, Kjelleberg S (2003) The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol Lett 220:187–195.  https://doi.org/10.1016/S0378-1097(03)00097-1CrossRefPubMedGoogle Scholar
  52. Viducic D, Murakami K, Amoh T, Ono T, Miyake Y (2016) RpoN modulates carbapenem tolerance in Pseudomonas aeruginosa through Pseudomonas quinolone signal and PqsE. Antimicrob Agents Chemother 60:5752–5764.  https://doi.org/10.1128/AAC.00260-16CrossRefPubMedPubMedCentralGoogle Scholar
  53. Viducic D, Murakami K, Amoh T, Ono T, Miyake Y (2017) Role of the interplay between quorum sensing regulator VqsR and the Pseudomonas quinolone signal in mediating carbapenem tolerance in Pseudomonas aeruginosa. Res Microbiol 168:450–460.  https://doi.org/10.1016/j.resmic.2017.02.007CrossRefPubMedGoogle Scholar
  54. Wang D, Seeve C, Pierson LS 3rd, Pierson EA (2013) Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics 14:618.  https://doi.org/10.1186/1471-2164-14-618CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhao J, Yu X, Zhu M, Kang H, Ma J, Wu M, Gan J, Deng X, Liang H (2016) Structural and molecular mechanism of CdpR involved in quorum-sensing and bacterial virulence in Pseudomonas aeruginosa. PLoS Biol 14:e1002449.  https://doi.org/10.1371/journal.pbio.1002449CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of North DakotaGrand ForksUSA
  2. 2.Wuhan University School of Health SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations