Quorum Sensing in Life Support Systems: The MELiSSA Loop

  • Sandra C. Catachura
  • Natalie Leys
  • Felice MastroleoEmail author


Currently space exploration is possible thanks to the advanced technology that allow humans to survive on Space. However, for future long space mission it is necessary to investigate new technologies to ensure human life. Nowadays humans can survive at Space in the International Space Station (ISS) for a limited period of time i.e. almost 6 months at ISS whereas 40 days is foreseen for the Chinese Space Laboratory to be ready by 2020. Longer times of space exploration can be achieved if food oxygen and water (among other products) could be produced continuously without resupplying products from Earth. Several research groups have investigated about this possibility using Controlled Ecological Life-Support Systems (CELSS). Among those systems is the MELiSSA project that uses microorganism such as bacteria, cyanobacteria and higher plants to use human waste and convert it into water, oxygen and food.

The use of microorganism in these recycling systems needs special attention at different levels e.g. technical, environmental and biological parameters. In the frame work of the MELiSSA project some of the technical challenges include bioreactors design, the monitoring and control systems. Microorganisms behavior at space can be affected by environmental conditions such microgravity, space ionizing radiation as well as intrinsic biological behavior such genetic instability, metabolism and cell-to-cell communication also termed as quorum sensing. The aim of this chapter is to focus on that microbiological behavior and its possible effects on the MELiSSA loop.


MELiSSA Quorum sensing Life support Space Microbes Photosynthetic 


  1. Abell GC, Cooke CM, Bennett CN, Conlon MA, McOrist AL (2008) Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol Ecol 66:505–515. Scholar
  2. Bartsev SI, Mezhevikin VV, Okhonin VA (1996) BIOS-4 as an embodiment of CELSS development conception. Adv Space Res 18(1/2):201–204. Scholar
  3. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246. Scholar
  4. Bluem V, Paris F (2003) Possible applications of aquatic bioregenerative life support modules for food production in a Martian base. Adv Space Res 31:77–86. Scholar
  5. Burton EO, Read HW, Pellitteri MC, Hickey WJ (2005) Identification of acyl-homoserine lactone signal molecules produced by Nitrosomonas europaea strain Schmidt. Appl Environ Microbiol 71:4906–4909. Scholar
  6. Cabello F (2007) Cultivo en bioreactores de Rhodospirillum rubrum en condiciones fotoheterotróficas. (Doctor), Universitat Autònoma de Barcelona, BarcelonaGoogle Scholar
  7. Carius L, Carius AB, McIntosh M, Grammel H (2013) Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum. BMC Microbiol 13:189. Scholar
  8. Condori S (2016) Unraveling the quorum sensing system of the photosynthetic bacterium Rhodospirillum rubrum S1H under light anaerobic conditions. (Doctor), University of Mons, MonsGoogle Scholar
  9. Condori S, Atkinson S, Leys N, Wattiez R, Mastroleo F (2016) Construction and phenotypic characterization of M68, an RruI quorum sensing knockout mutant of the photosynthetic alphaproteobacterium Rhodospirillum rubrum. Res Microbiol 167:380–392. Scholar
  10. Erickson JD, Eckelkamp RE, Barta DJ, Dragg J (1996) Mission simulation as an approach to develop requirements for automation in advanced life support systems. Adv Space Res 18:191–196CrossRefPubMedGoogle Scholar
  11. Farges B, Poughon L, Creuly C, Cornet J-F, Dussap CG, Lasseur C (2008) Dynamic aspects and controllability of the MELiSSA project: a bioregenerative system to provide life support in space. Appl Biochem Biotechnol 151:686. Scholar
  12. Gòdia F, Albiol J, Montesinos JL, Perez J, Creus N, Cabello F, Mengual X, Montras A, Lasseur C (2002) MELISSA: a loop of interconnected bioreactors to develop life support in space. J Biotechnol 99:319–330. Scholar
  13. Gòdia F, Albiol J, Pérez J, Creus N, Cabello F, Montràs A, Masot A, Lasseur C (2004) The MELISSA pilot plant facility as an integration test-bed for advanced life support systems. Adv Space Res 34:1483–1493. Scholar
  14. Hendrickx L, De Wever H, Hermans V, Mastroleo F, Morin N, Wilmotte A, Janssen P, Mergeay M (2006) Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions. Res Microbiol 157:77–86. Scholar
  15. Hongsthong A, Sirijuntarut M, Prommeenate P, Lertladaluck K, Porkaew K, Cheevadhanarak S, Tanticharoen M (2008) Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. FEMS Microbiol Lett 288:92–101. Scholar
  16. Hsiao A, Ahmed AMS, Subramanian S, Griffin NW, Drewry LL, Petri WA, Haque R, Ahmed T, Gordon JI (2014) Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515:423–426. Scholar
  17. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. Scholar
  18. Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK, Pangule RC, Parra M, Dordick JS, Plawsy JL, Collins CH (2013) Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One 8:e62437. Scholar
  19. Lasseur C, Brunet J, de Weever H, Dixon M, Dussap G, Godia F, Leys N, Mergeay M, Van Der Straeten D (2010) MELiSSA: the European project of closed life support system. Gravitational Space Biol 23:12Google Scholar
  20. Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GS, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480. Scholar
  21. Leroy B, De Meur Q, Moulin C, Wegria G, Wattiez R (2015) New insight into the photoheterotrophic growth of the isocytrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate. Microbiology 161:1061–1072. Scholar
  22. Lukás F, Gorenc G, Kopečný J (2008) Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria. Folia Microbiol 53:221–224. Scholar
  23. Mastroleo F, Van Houdt R, Leroy B, Benotmane MA, Janssen A, Mergeay M, Vanhavere F, Hendrickx L, Wattiez R, Leys N (2009) Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J 3:1402–1419. Scholar
  24. Mastroleo F, Van Houdt R, Atkinson S, Mergeay M, Hendrickx L, Wattiez R, Leys N (2013) Modelled microgravity cultivation modulates N-acylhomoserine lactone production in Rhodospirillum rubrum S1H independently of cell density. Microbiology 159:2456–2466. Scholar
  25. Mellbye BL, Bottomley PJ, Sayavedra-Soto LA (2015) Nitrite-oxidizing bacterium Nitrobacter winogradskyi produces N-acyl-homoserine lactone autoinducers. Appl Environ Microbiol 81:5917–5926. Scholar
  26. Mellbye BL, Giguere AT, Bottomley PJ, Sayavedra-Soto LA (2016) Quorum quenching of Nitrobacter winogradskyi suggests that quorum sensing regulates fluxes of nitrogen oxide(s) during nitrification. MBio 7(5):e01753–e01716. Scholar
  27. Mergeay M, Verstraete W, Dubertret G, Lefort-Tran M, Chipaux C, Binot R (1988) ‘MELiSSA’ – a microorganisms-based model for ‘CELSS’ development. Paper presented at the 3rd European symposium on space thermal control and life support systems, Noordwijk, The NetherlandsGoogle Scholar
  28. Mitsumori M, Xu L, Kajikawa H, Kurihara M, Tajima K, Hai J, Takenaka A (2003) Possible quorum sensing in the rumen microbial community: detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol Lett 219:47–52. Scholar
  29. Nelson M, Pechurkin NS, Allen JP, Somova LA, Gitelson JI (2009) In: L.K.W. et al (eds) Environmental biotechnology, vol 10. Humana Press, New YorkGoogle Scholar
  30. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. Scholar
  31. Ning C, Gest H (1966) Regulation of L-isoleucine biosynthesis in the photosynthetic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci U S A 56:1823–1827CrossRefPubMedPubMedCentralGoogle Scholar
  32. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. Scholar
  33. Poughon L, Farges B, Dussap CG, Godia F, Lasseur C (2009) Simulation of the MELiSSA closed loop system as a tool to define its integration strategy. Adv Space Res 44:1392–1403. Scholar
  34. Poughon L, Creuly C, Farges B, Dussap CG, Schiettecatte W, Jovetic S, De Wever H (2013) Test of an anaerobic prototype reactor coupled with a filtration unit for production of VFAs. Bioresour Technol 145:240–247. Scholar
  35. Pycke B (2009) The fate and effects of micropollutants in a biological life support system. (Doctor), Ghent University, BelgiumGoogle Scholar
  36. Romero M, Diggle SP, Heeb S, Cámara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80. Scholar
  37. Romero M, Muro-Pastor AM, Otero A (2011) Quorum sensing N-acylhomoserine lactone signals affect nitrogen fixation in the cyanobacterium Anabaena sp. PCC7120. FEMS Microbiol Lett 315:101–108. Scholar
  38. Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Nguyen YU, Sodipe A, Jejelowo O (2010) Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 85:885–891. Scholar
  39. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599. Scholar
  40. Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476. Scholar
  41. Sharif DI, Gallon J, Smith CJ, Dudley E (2008) Quorum sensing in cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J 2:1171–1182. Scholar
  42. Shen Q, Gao J, Liu J, Liu S, Liu Z, Wang Y, Guo B, Zhuang X, Zhuang G (2016) A new acyl-homoserine lactone molecule generated by Nitrobacter winogradskyi. Sci Rep 6:22903. Scholar
  43. Shiner EK, Terentyev D, Bryan A, Sennoune S, Martinez-Zaguilan R, Li G, Gyorke S, Williams SC, Rumbaugh KP (2006) Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol 8:1601–1610. Scholar
  44. Tako Y, Arai R, Tsuga S, Komatsubara O, Masuda T, Nozoe S, Nitta K (2010) CEEF: closed ecology experiment facilities. Gravitational Space Biol 23Google Scholar
  45. Yang Q, Defoirdt T (2015) Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi. Environ Microbiol 17:960–968. Scholar
  46. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H, Williams P (2002) N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646. Scholar
  47. Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sandra C. Catachura
    • 1
  • Natalie Leys
    • 1
  • Felice Mastroleo
    • 1
    Email author
  1. 1.Microbiology Unit, Interdisciplinary Biosciences (BIO)Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN)MolBelgium

Personalised recommendations