Advertisement

Applications of Quorum Sensing in Microbial Fuel Cell

  • Deepika Jothinathan
  • Nasrin Fathima AH
  • Pachaiappan Raman
Chapter

Abstract

Microbes in the biofilm coordinate themselves for a proper electron transfer inside the microbial fuel cell. Certain microbes use external mediators for the effective electron transfer. There are few exoelectrogens which can directly transfer the electrons to the anode via cytochromes and others through an indirect electron transfer, where the mechanism either takes place by bacteria’s own mediators or by some chemical mediators added in the anode chamber. Bacteria in order to observe their population density, they use an autoinducer ligand and this process is so called quorum sensing.

Keywords

Biofilm Acylhomoserine lactones Exopolysaccharides Electron acceptors Redox 

References

  1. Abhijeet PB, Jonathan RM, Tatiana AV, Choo Y, Hamilton (2009) Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol Biofuels 2:7.  https://doi.org/10.1186/1754-6834-2-7CrossRefGoogle Scholar
  2. Aishwarya D, Dalvi, Neha M, Shinde OA, Kininge PT (2011) Microbial fuel cell for production of bioelectricity from whey and biological waste treatment. Int J Adv Biotechnol Res 2:263–268Google Scholar
  3. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246.  https://doi.org/10.1016/j.cell.2006.04.001CrossRefPubMedGoogle Scholar
  4. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555.  https://doi.org/10.1128/AEM.69.3.1548-1555.2003CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boris T, Poonam M, Bourque JS, Serge RG (2011) Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour Technol 102:5685–5691.  https://doi.org/10.1016/j.biortech.2011.02.097CrossRefGoogle Scholar
  6. Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26.  https://doi.org/10.1016/j.tim.2004.11.006CrossRefPubMedGoogle Scholar
  7. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238.  https://doi.org/10.1111/j.1365-2958.2005.05020.xCrossRefPubMedGoogle Scholar
  8. Chaturvedi V, Verma P (2013) Metabolism of chicken feathers and concomitant electricity generation by pseudomonas aeruginosa by employing microbial fuel cell (MFC). J Waste Manag.  https://doi.org/10.1155/2013/282798
  9. Chaudhuri SK, Lovely DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1129–1232.  https://doi.org/10.1038/nbt867CrossRefGoogle Scholar
  10. Clauwaert P, van der Ha D, Verstraete W (2008) Energy recovery from energy rich vegetable products with microbial fuel cells. Biotechnol Lett 30:1947–1951.  https://doi.org/10.1007/s10529-008-9778-2CrossRefPubMedGoogle Scholar
  11. Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovely DR (1996) Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536 PMCID: PMC167928PubMedPubMedCentralGoogle Scholar
  12. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 PMID: 9535661CrossRefGoogle Scholar
  13. de Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11:279–288.  https://doi.org/10.1111/j.1462-2920.2008.01792.xCrossRefPubMedGoogle Scholar
  14. Dietrich LEP, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206.  https://doi.org/10.1126/science.116061CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dietrich LEP, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195:1371–1380.  https://doi.org/10.1128/JB.02273-12CrossRefPubMedPubMedCentralGoogle Scholar
  16. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482.  https://doi.org/10.1016/j.biotechadv.2007.05.004CrossRefPubMedGoogle Scholar
  17. Duan K, Surette MG (2007) Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189:4827–4836.  https://doi.org/10.1128/JB.00043-07CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dumas C, Basseguy R, Bergel A (2008) Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim Acta 53:2494–2500.  https://doi.org/10.1016/j.electacta.2007.10.018CrossRefGoogle Scholar
  19. Flemming HC, Wingender J (2002) Extracellular polymeric substances (EPS): structural, ecological and technical aspects. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1223–1231Google Scholar
  20. Ieropoulo SI, Greenman J, Melhuish C, Horsfield I, EcoBot-III-A (2010) Robot with guts. ALIFE 733–740 at https://mitpweb2.mit.edu/sites/default/files/titles/alife/0262290758chap131.pdf
  21. Ieropoulos I, Greenman J, Melhuish C (2003) Imitation metabolism: energy autonomy in biologically inspired robots. In: Proceedings of the 2nd international symposium on imitation of animals and artifacts, pp 191–194Google Scholar
  22. Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR (2010) Specific localization of the c-type cytochrome Omc Z at the anode surface in current producing biofilms of Geobacter sulfurreducens. Environ Microbiol Rep 3:211–217.  https://doi.org/10.1111/j.1758-2229.2010.00210.xCrossRefPubMedGoogle Scholar
  23. Justin B, Meghann R, Bradley R, Jeremy P, Steven F, Kenneth N (2009) Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. Biotechnol Bioeng 102:436–444.  https://doi.org/10.1002/bit.22072CrossRefGoogle Scholar
  24. Kaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY (2009) Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater 172:224–228.  https://doi.org/10.1016/j.jhazmat.2009.06.162CrossRefPubMedGoogle Scholar
  25. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140CrossRefGoogle Scholar
  26. Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125CrossRefGoogle Scholar
  27. Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111.  https://doi.org/10.1007/s12088-016-0616-2CrossRefPubMedGoogle Scholar
  28. Kassongo J, Togo CA (2011) Performance improvement of whey-driven microbial fuel cells by acclimation of indigenous anodophilic microbes. Afr J Biotechnol 10(40):7846–7852.  https://doi.org/10.5897/AJB11.206CrossRefGoogle Scholar
  29. Katuri KP, Enright AM, O’Flaherty V, Leech D (2012) Microbial analysis of anodic biofilm in a microbial fuel cell using slaughter house wastewater. Bioelectrochemistry 87:164–171.  https://doi.org/10.1016/j.bioelechem.2011.12.002CrossRefPubMedGoogle Scholar
  30. Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441(7091):300–302.  https://doi.org/10.1038/441300aCrossRefPubMedGoogle Scholar
  31. Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4:e00553–e00512.  https://doi.org/10.1128/mBio.00553-12CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kristen S, Brastad ZH (2013) Water softening using microbial desalination cell technology. Desalination 309:32–37.  https://doi.org/10.1016/j.desal.2012.09.015CrossRefGoogle Scholar
  33. Lade H, Paul D, Kweon JH (2014) Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 10:550.  https://doi.org/10.7150/ijbs.9028CrossRefPubMedPubMedCentralGoogle Scholar
  34. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192 PMID: 16999087CrossRefGoogle Scholar
  35. Lojou E, Durand MC, Dolla A (2002) Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanalysis 14:913–922CrossRefGoogle Scholar
  36. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508.  https://doi.org/10.1038/nrmicro1442CrossRefPubMedGoogle Scholar
  37. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:1–8.  https://doi.org/10.1016/j.copbio.2008.10.005CrossRefGoogle Scholar
  38. Malvankar NS, Lovley DR (2012) Microbial nanowires:a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5:1039–1046.  https://doi.org/10.1002/cssc.201100733CrossRefPubMedGoogle Scholar
  39. Mathis BJ, Marshall CW, Milliken CE, Makkar RS, Creager SE, May HD (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78:147–155.  https://doi.org/10.1007/s00253-007-1266-4CrossRefPubMedGoogle Scholar
  40. Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang C, Izallalen M, Mester T (2013) U(VI) reduction by a diversity of outer surface c-type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79:6369–6374.  https://doi.org/10.1128/AEM.02551-13CrossRefPubMedPubMedCentralGoogle Scholar
  41. Osman MH, Shah AA, Walsh FC (2010) Recent progress and continuing challenges in bio-fuel cells part II: microbial. Biosens Bioelectron 26:953–963CrossRefGoogle Scholar
  42. Park HS, Kim SK, Shin IH, Jeong YJ (2001) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–300CrossRefGoogle Scholar
  43. Parsek MR, Greenberg EP (2000) Acylhomoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97:8789–8793.  https://doi.org/10.1073/pnas.97.16.8789CrossRefPubMedPubMedCentralGoogle Scholar
  44. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39(27):14663–14668.  https://doi.org/10.1016/j.ijhydene.2014.07.084
  45. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141.  https://doi.org/10.1016/j.biortech.2014.11.029
  46. Patrick DK, Roland C, Douglas FC, Priscilla AS, John MR, Bruce EL (2011) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour Technol 102:388–394.  https://doi.org/10.1016/j.biortech.2010.05.019CrossRefGoogle Scholar
  47. Pham TH, Boon N, Aelterman P, Clauwaert P, Schamphelaire LD, Vanhaecke L, Maeyer KD, Hofte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp. enables a gram positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77:1119–1129.  https://doi.org/10.1007/s00253-007-1248-6CrossRefPubMedGoogle Scholar
  48. Phuc TH, Beomseok T, Chang IS (2008) Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuel 22:164–168.  https://doi.org/10.1021/ef700294xCrossRefGoogle Scholar
  49. Prasertsung N, Reungsang A, Ratanatamskul C (2012) Alkalinity of cassava wastewater fed in anodic enhance electricity generation by a single chamber microbial fuel cells. Eng J 16:17–28CrossRefGoogle Scholar
  50. Qiao Y, Qiao YJ, Zou L, Ma CX, Liu JH (2015) Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Bioresour Technol 198:1–6.  https://doi.org/10.1016/j.biortech.2015.09.002CrossRefPubMedGoogle Scholar
  51. Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535 PMID: 14571978CrossRefGoogle Scholar
  52. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382.  https://doi.org/10.1128/AEM.70.9.5373-5382.2004CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519–527CrossRefGoogle Scholar
  54. Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, Price-Whelan A, Dietrich LEP (2012) Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A 109:19420–19425.  https://doi.org/10.1073/pnas.1213901109CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–3678.  https://doi.org/10.1128/AEM.02600-08CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rismani YH, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cell. Biotechnol Bioeng 97:1398–1407.  https://doi.org/10.1002/bit.21366CrossRefGoogle Scholar
  57. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634.  https://doi.org/10.1021/es071720+CrossRefPubMedGoogle Scholar
  58. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Banin G, Peres CM, Schimdt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599.  https://doi.org/10.1038/nature07088CrossRefPubMedGoogle Scholar
  59. Sedky H, Hassan A, Kim YS, Oh S (2012) Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzym Microbiol Technol 51:269–273.  https://doi.org/10.1016/j.enzmictec.2012.07.008CrossRefGoogle Scholar
  60. Shrout JD, Nerenberg R (2012) Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environ Sci Technol 46:1995–2005.  https://doi.org/10.1021/es203933hCrossRefPubMedGoogle Scholar
  61. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764.  https://doi.org/10.1038/35037627CrossRefPubMedGoogle Scholar
  62. Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA et al (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825.  https://doi.org/10.1038/nbt716CrossRefPubMedGoogle Scholar
  63. Vega CA, Fernandez I (1987) Mediating effect of ferric chelate compounds in microbial fuel cell with Lactobacillus planetarium, Streptococcus lactis and Erwinia dissolvens. Bioelectrochem Bioenerg 17:217–222CrossRefGoogle Scholar
  64. Venkata MS, Veer RS, Srikanth S, Sarma PN (2007) Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr Sci 92(12):1720–1726Google Scholar
  65. Venkata MS, Mohanakrishna G, Purushotham RB, Saravanan R, Sarma PN (2008) Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J 39:121–130.  https://doi.org/10.1016/j.bej.2007.08.023CrossRefGoogle Scholar
  66. Xi MY, Sun YP (2008) Preliminary study on E. coli microbial fuel cell and on-electrode taming of the biocatalyst. Chin J Process Eng 8(6):1179–1184Google Scholar
  67. Yi Z, Defeng X, John MR, Bruce EL (2008) Isolation of exoeletrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74:3130–3137.  https://doi.org/10.1128/AEM.02732-07CrossRefGoogle Scholar
  68. Yong YC, Wu XY, Sun JZ, Cao YX, Song H (2015) Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. Chemosphere 140:18–25.  https://doi.org/10.1016/j.chemosphere.2014.10.020CrossRefPubMedGoogle Scholar
  69. Yujie F, Xin W, Bruce EL, He L (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880CrossRefGoogle Scholar
  70. Zhuang LS, Zhou YY, Liu T, Wu Z (2011) Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm. Bioresour Technol 102:284–289CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Deepika Jothinathan
    • 1
  • Nasrin Fathima AH
    • 2
  • Pachaiappan Raman
    • 3
  1. 1.Department of Life SciencesCentral University of Tamil NaduThiruvarurIndia
  2. 2.Department of Plant Biology and Plant BiotechnologyPresidency CollegeChennaiIndia
  3. 3.Department of Biotechnology, School of BioengineeringSRM UniversityKattankulathurIndia

Personalised recommendations