Advertisement

Analysis of Jitter and Shimmer for Parkinson’s Disease Diagnosis Using Telehealth

  • Harisudha Kuresan
  • Sam Masunda
  • Dhanalakshmi Samiappan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 768)

Abstract

The future of telecommunications is premised on high fidelity networks with extreme precision, which in turn capacitates deployment of telediagnostic tools. Parkinson’s disease (PD) clinical characterization is based on, speech problems, tremors in hands, arms, legs and face, body swelling, muscle rigidity and movement problems. Speech problems are cited as one of the earliest prodromal for PD. However, using clinical diagnosis it takes up to 5 or more years to detect PD. Therefore, with this regard speech can be used, as an early biomarker for PD. Features of interest for detecting PD will be prosodic, spectral, vocal tract and excitation source speech features. We infer from the analysis, MFFC with jitter and shimmer feature extraction provides a promising method that can help the clinicians in the diagnostic process.

Keywords

Biomarker Feature extraction Parkinson’s disease Speech features Speech signal Telehealth 

References

  1. 1.
    Verma, A.K., Raj, J., Sharma, V., Singh, T.B., Srivastava, S., Srivastava, R.: Epidemiology and associated risk factors of Parkinson’s disease among the north Indian population. Clin. Epidemiol. Glob. Heal. 5(1), 8–13 (2017)CrossRefGoogle Scholar
  2. 2.
    Bala, A., Gupta, B.: Parkinson′s disease in India: an analysis of publications output during 2002–2011. Int. J. Nutr. Pharmacol. Neurol. Dis. 3(3), 254 (2013)CrossRefGoogle Scholar
  3. 3.
    Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008)CrossRefGoogle Scholar
  4. 4.
    Tsanas, A., Little, M.A., McSharry, P.E., Spielman, J., Ramig, L.O.: Novel speech signal processing algorithms for high-accuracy classification of Parkinsons disease. IEEE Trans. Biomed. Eng. 59(5), 1264–1271 (2012)CrossRefGoogle Scholar
  5. 5.
    Harel, B., Cannizzaro, M., Snyder, P.J.: Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain Cogn. 56(1), 24–29 (2004)CrossRefGoogle Scholar
  6. 6.
    Sakar, B.E., et al.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Heal. Informatics 17(4), 828–834 (2013)CrossRefGoogle Scholar
  7. 7.
    Cernak, M., Orozco-Arroyave, J.R., Rudzicz, F., Christensen, H., Vásquez-Correa, J.C., Nöth, E.: Characterisation of voice quality of Parkinson’s disease using differential phonological posterior features. Comput. Speech Lang. 46, 196–208 (2017)CrossRefGoogle Scholar
  8. 8.
    Benba, A., Jilbab, A., Hammouch, A.: Hybridization of best acoustic cues for detecting persons with Parkinson’s disease. 2nd World Conf. Complex Syst. WCCS 2014, 622–625 (2015)Google Scholar
  9. 9.
    Arora, S., et al.: Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: a pilot study. Park. Relat. Disord. 21(6), 650–653 (2015)CrossRefGoogle Scholar
  10. 10.
    Sharma, V. et al.: Spark: Personalized parkinson disease interventions through synergy between a smartphone and a smartwatch. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), pp. 103–114 (2014)Google Scholar
  11. 11.
    Wicks, P., Stamford, J., Grootenhuis, M.A., Haverman, L., Ahmed, S.: Innovations in e-health. Qual. Life Res. 23(1), 195–203 (2014)CrossRefGoogle Scholar
  12. 12.
    Stebbins, G.T., Goetz, C.G.: Factor structure of the Unified Parkinson’s disease rating scale: motor examination section. Mov. Disord. 13(4), 633–636 (1998)CrossRefGoogle Scholar
  13. 13.
    Qian, L., et al.: Frequency specific brain networks in Parkinson’s disease and comorbid depression. Brain Imaging Behav. 11(1), 224–239 (2017)CrossRefGoogle Scholar
  14. 14.
    Index of /ml/machine-learning-databases/00301. [Online]. Available: https://archive.ics.uci.edu/ml/machine-learning-databases/00301/. Accessed 24 Oct 2017
  15. 15.
    Meghraoui, D., Boudraa, B., Meksen, T.M., Boudraa, M.: Features dimensionality reduction and multi dimensional voice processing program to parkinson, pp. 16–18 (2016)Google Scholar
  16. 16.
    Han, W., Chan, C.F., Choy, C.S., Pun, K.P.: An efficient MFCC extraction method in speech recognition. In: IEEE Int. Symp. Circuits Syst., pp. 145–148, 2006Google Scholar
  17. 17.
    Patel, I., Rao, Y.S.: Speech recognition using hidden markov model with MFCC-subband technique. In: 2010 International conference recent trends information, telecommunication computer, pp. 168–172 (2010)Google Scholar
  18. 18.
    Tirumala, S.S., Shahamiri, S.R., Garhwal, A.S., Wang, R.: Speaker identification features extraction methods: a systematic review. Expert Syst. Appl. 90, 250–271 (2017)CrossRefGoogle Scholar
  19. 19.
    Bourouhou, A., Jilbab, A., Nacir, C., Hammouch, A.: Comparison of classification methods to detect the parkinson disease. In: 2016 international conference on electrical and information technologies (ICEIT), pp. 6–8 (2016)Google Scholar
  20. 20.
    Shirvan, R., Tahami, E.: Voice analysis for detecting Parkinson’s disease using genetic algorithm and KNN classification method. Biomed. Eng. (ICBME), 14–16 (2011)Google Scholar
  21. 21.
    Khorasani, A., Daliri, M.R.: HMM for classification of Parkinson’s disease based on the raw Gait data. J. Med. Syst. 38, 147 (2014)CrossRefGoogle Scholar
  22. 22.
    Gopi, E.S.: Digital speech processing using matlab. Springer India, New Delhi (2014)CrossRefGoogle Scholar
  23. 23.
    Reynolds, D.A., Rose, R.C.: Robust text-Independent speaker identification using gaussian mixture speaker models. IEEE Trans. Speech Audio Process 3, 72–83 (1995)CrossRefGoogle Scholar
  24. 24.
    Aggoun, A., Almaadeed, N., Amira, A.: Speaker identification using multimodal neural networks and wavelet analysis. IET Biometrics 4(1), 18–28 (2015)CrossRefGoogle Scholar
  25. 25.
    Boersma, P., Weenink, D.: Praat: doing Phonetics by Computer. [Online]. Available: http://www.fon.hum.uva.nl/praat/ (2017). Accessed: 24 Oct 2017
  26. 26.
    Boersma, P., Weenink, D.: Praat: doing phonetics by computer (Version 4.5.)[Computer program], Retrieved from www.praat.org, (2007)
  27. 27.
    Kilaru, V., Amin, M.G., Ahmad, F., Sévigny, P., Difilippo, D.: Gaussian mixture model based features for stationary human identification in urban radar imagery. Rad. Conf. IEEE 2014, 426–430 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Harisudha Kuresan
    • 1
  • Sam Masunda
    • 1
  • Dhanalakshmi Samiappan
    • 1
  1. 1.Department of Electronics and Communication EngineeringSRM Institute of Science and TechnologyKattankulathurIndia

Personalised recommendations