Advertisement

Memory Driven Design Methodologies for Optimal SSD Performance

  • L. Zuolo
  • C. Zambelli
  • Rino Micheloni
  • P. Olivo
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 37)

Abstract

Solid State Drives (SSDs) are one of the electronic systems with the higher development rate in the last decade: they are widely used in hyper scale systems such as cloud computing and big data servers where performance is a constraint, as well as in consumer electronics by replacing traditional hard disk drives (HDDs).

References

  1. 1.
    G. Wong, SSD Market Overview, in Inside Solid State Drives (SSDs), ed. by R. Micheloni, A. Marelli, and K. Eshghi (Springer, 2012), pp. 1–17Google Scholar
  2. 2.
    Semiconductor Industry Association, International technology roadmap for semiconductors (2015), http://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/
  3. 3.
    D. Liu, Y. Wang, Z. Qin, Z. Shao, Y. Guan, A space reuse strategy for flash translation layers in SLC NAND flash memory storage systems. IEEE Trans. VLSI Syst. 20(6), 1094–1107 (2012)CrossRefGoogle Scholar
  4. 4.
    T. Wang, D. Liu, Y. Wang, Z. Shao, FTL2: a hybrid flash translation layer with logging for write reduction in flash memory. ACM SIGPLAN Not. 48(5), 91–100 (2013)CrossRefGoogle Scholar
  5. 5.
    Y.H. Chang, P.C. Huang, P.H. Hsu, L.J. Lee, T.W. Kuo, D. Du, Reliability enhancement of flash-memory storage systems: an efficient version-based design. IEEE Trans. Comput. 62(12), 2503–2515 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    JEDEC Org., JESD 22-A 117 document, Oct 2011Google Scholar
  7. 7.
    R. Micheloni, A. Marelli, R. Ravasio, Basic coding theory, in Error Correction Codes for Non-Volatile Memories, ed. by R. Micheloni, A. Marelli, R. Ravasio (Springer, 2008), pp. 1–33Google Scholar
  8. 8.
    Serial ATA International Organization, SATA Revision 3.0 Specifications, www.sata-io.org
  9. 9.
    Intel Inc., Intel Solid-State Drive DC S3500 Series Quality of Service (2013), p. 9, http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3500-spec.html
  10. 10.
    A. Grossi, L. Zuolo, F. Restuccia, C. Zambelli, P. Olivo, Quality-of-service implications of enhanced program algorithms for charge-trapping NAND in future solid-state drives, IEEE Trans. Dev. Mat. Reliab. 15(3), 363–369 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Aritome, NAND flash memory technologies. Wiley-IEEE Press (2016)Google Scholar
  12. 12.
    J.D. Lee, J.H. Choi, D. Park, K. Kim, Degradation of tunnel oxide by FN current stress and its effects on data retention characteristics of 90 nm NAND flash memory cells, in Proceedings International Reliability Physics Symposium, Mar 2003, pp. 497–501Google Scholar
  13. 13.
    N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade, A. Kurtz, Q. Meng, N. Righos, J. Wu, Flash EEPROM threshold instabilities due to charge trapping during program/erase cycling, IEEE Trans. Dev. Mat. Reliab. 4(3), 335–344 (2004)CrossRefGoogle Scholar
  14. 14.
    N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness, L.R. Nevill, Bit error rate in NAND flash memories, in Proceedings International Reliability Physics Symposium, Apr 2008, pp. 9–19Google Scholar
  15. 15.
    K. Fukuda, Y. Watanabe, E. Makino, K. Kawakami, J. Sato, T. Takagiwa, N. Kanagawa, H. Shiga, N. Tokiwa, Y. Shindo, T. Ogawa, T. Edahiro, M. Iwai, O. Nagao, J. Musha, T. Minamoto, Y. Furuta, K. Yanagidaira, Y. Suzuki, D. Nakamura, Y. Hosomura, R. Tanaka, H. Komai, M. Muramoto, G. Shikata, A. Yuminaka, K. Sakurai, M. Sakai, H. Ding, M. Watanabe, Y. Kato, T. Miwa, A. Mak, M. Nakamichi, G. Hemink, D. Lee, M. Higashitani, B. Murphy, B. Lei, Y. Matsunaga, K. Naruke, T. Hara, A 151-mm2 64-Gb 2 Bit/Cell NAND flash memory in 24-nm CMOS technology. IEEE J. Solid State Circuit 47(1), 75–84 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    K.T. Park, O. Kwon, S. Yoon, M.H. Choi, I.M. Kim, B.G. Kim, M.S. Kim, Y.H. Choi, S.H. Shin, Y. Song, J.Y. Park, J.E. Lee, C.G. Eun, H.C. Lee, H.J. Kim, J.H. Lee, J.Y. Kim, T.M. Kweon, H.J. Yoon, T. Kim, D.K. Shim, J. Sel, J.Y. Shin, P. Kwak, J.M. Han, K.S. Kim, S. Lee, Y.H. Lim, T.S. Jung, A 7 MB/s 64 Gb 3-Bit/Cell DDR NAND flash memory in 20 nm-node technology, in IEEE International Solid-State Circuits Conference, Feb 2011, pp. 212–213Google Scholar
  17. 17.
    C. Trinh, N. Shibata, T. Nakano, M. Ogawa, J. Sato, Y. Takeyama, K. Isobe, B. Le, F. Moogat, N. Mokhlesi, K. Kozakai, P. Hong, T. Kamei, K. Iwasa, J. Nakai, T. Shimizu, M. Honma, S. Sakai, T. Kawaai, S. Hoshi, J. Yuh, C. Hsu, T. Tseng, J. Li, J. Hu, M. Liu, S. Khalid, J. Chen, M. Watanabe, H. Lin, J. Yang, K. McKay, K. Nguyen, T. Pham, Y. Matsuda, K. Nakamura, K. Kanebako, S. Yoshikawa, W. Igarashi, A. Inoue, T. Takahashi, Y. Komatsu, C. Suzuki, K. Kanazawa, M. Higashitani, S. Lee, T. Murai, K. Nguyen, J. Lan, S. Huynh, M. Murin, M. Shlick, M. Lasser, R. Cernea, M. Mofidi, K. Schuegraf, K. Quader, A 5.6 MB/s 64 Gb 4b/Cell NAND flash memory in 43 nm CMOS, in IEEE International Solid-State Circuits Conference, Feb 2009, pp. 246–247Google Scholar
  18. 18.
    L. Zuolo, C. Zambelli, R. Micheloni, D. Bertozzi, P. Olivo, Analysis of reliability/performance trade-off in solid state drives, in Proceedings International Reliability Physics Symposium, June 2014, pp. 4B.3.1–4B.3.5Google Scholar
  19. 19.
    K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, T. Zhang, LDPC-in-SSD: making advanced error correction codes work effectively in solid state drives, in USENIX Conference on File and Storage Technologies (2013), pp. 243–256Google Scholar
  20. 20.
  21. 21.
    PCI-SIG Ass., PCI Express Base 3.0 Specification (2013), http://www.pcisig.com/specifications/pciexpress/base3/
  22. 22.
    L. Zuolo, C. Zambelli, R. Micheloni, M. Indaco, S. Di Carlo, P. Prinetto, D. Bertozzi, P. Olivo, SSDExplorer: a virtual platform for performance/reliability-oriented fine-grained design space exploration of solid state drives. IEEE Trans. Comput. Aided Design 34(10), 1627–1638 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Micheloni, A. Marelli, R. Ravasio, Cyclic codes for non volatile storage, in Error Correction Codes for Non-Volatile Memories, ed. by R. Micheloni, A. Marelli, R. Ravasio, (Springer, 2008), pp. 167–198Google Scholar
  24. 24.
    Y. Lee, H. Yoo, I. Yoo, I.-C. Park, 6.4 Gb/s multi-threaded BCH encoder and decoder for multi-channel SSD controllers, in IEEE International Solid-State Circuits Conference, Feb 2012, pp. 426–428Google Scholar
  25. 25.
    R. Micheloni, A. Marelli, R. Ravasio, BCH hardware implementation in NAND flash memories, in Error Correction Codes for Non-Volatile Memories, ed. by R. Micheloni, A. Marelli, R. Ravasio (Springer, 2008), pp. 199–247Google Scholar
  26. 26.
    S.M. Jeff Yang, High-efficiency SSD for reliable data storage systems, in Flash Memory Summit (2012)Google Scholar
  27. 27.
    A. Cometti, L. Huang, A. Melik-Martirosian, Apparatus and method for determining a read level of a flash memory after an inactive period of time. US Patent 8,644,099, 4 Feb 2014Google Scholar
  28. 28.
    X. Wang, G. Dong, L. Pan, R. Zhou, Error correction codes and signal processing in flash memory, in Flash Memories, ed. by I. Stievano (2011), pp. 57–82Google Scholar
  29. 29.
    X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, R. Pletka, Write amplification analysis in flash-based solid state drives, in Proceedings ACM International Systems and Storage Conference, May 2009, pp. 10:1–10:9Google Scholar
  30. 30.
    D. Rollins, Best practices for SSD performance measurement, in Micron Technology, Inc., Technical Marketing Brief (2011), https://www.micron.com/~/media/documents/products/technical-marketing-brief/briefssdperformancemeasure.pdf
  31. 31.
    K. Eshghi, R. Micheloni, SSD architecture and PCI express interface, in Inside Solid State Drives (SSDs), ed. by R. Micheloni, A. Marelli, K. Eshghi (Springer, 2012), pp. 19–45Google Scholar
  32. 32.
    L.M. Grupp, J.D. Davis, S. Swanson, The bleak future of NAND flash memory, in Proceedings Usenix International Conference on File and Storage Technologies (2012), pp. 1–8Google Scholar
  33. 33.
    Avago Tech., Accelerating financial applications using solid state storage, (2011), http://docs.avagotech.com/docs/12353095
  34. 34.
    M. Karol, M. Hluchyj, S. Morgan, Input versus output queueing on a space-division packet switch. IEEE Trans. Commun. 35(12), 1347–1356 (1987)CrossRefGoogle Scholar
  35. 35.
    Intel, Intel X18-M X25-M SATA solid state drive. Enterprise Server/Storage Applications, http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf
  36. 36.
    E.G. Coffman Jr., P.J. Denning, Operating Systems Theory. Prentice Hall Professional Technical Reference (1973)Google Scholar
  37. 37.
    S. Lee, T. Kim, K. Kim, J. Kim, Lifetime management of flash-based SSDs using recovery-aware dynamic throttling, in Proceedings Usenix International Conference on File and Storage Technologies (2012)Google Scholar
  38. 38.
    R.-S. Liu, C.-L. Yang, W. Wu, Optimizing NAND flash-based SSDs via retention relaxation, in Proceedings Usenix International Conference on File and Storage Technologies (2012)Google Scholar
  39. 39.
    J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, Y. Wang, SDF: software-defined flash for web-scale internet storage systems, in Proceedings ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Mar 2014, pp. 471–484Google Scholar
  40. 40.
    Open-Channel Solid State Drives (2016), http://openchannelssd.readthedocs.org/en/latest/
  41. 41.
    A. Batwara, Leveraging host based flash translation layer for application acceleration, in Flash Memory Summit, Aug 2012Google Scholar
  42. 42.
    Open Channel Solid State Drives NVMe Specification (2016), http://bit.ly/2gfidpQ
  43. 43.
    Samsung Electronics Co., Power loss protection (PLP)—protect your data against sudden power loss (2014), http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/SamsungSSD845DC05PowerlossprotectionPLP.pdf
  44. 44.
    C. Zambelli, G. Navarro, V. Sousa, I.L. Prejbeanu, L. Perniola, Phase change and magnetic memories for solid-state drive applications. Proc. IEEE 105(9), 1790–1811 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Gonzalez, M. Bjrling, S. Lee, C. Dong, Y.R. Huang, Application-driven flash translation layers on open-channel SSDs, in Non Volatile Memory Workshop, Mar 2016, pp. 1–2Google Scholar
  46. 46.
    S. Bates, Accelerating data centers using NVMe and CUDA, in Flash Memory Summit, Aug 2014Google Scholar
  47. 47.
    HGST, Ultrastar SN150 Series NVMe PCIe x4 lane half-height half-length cardsolid-state drive product manual, https://www.hgst.com/sites/default/files/resources/USSN150_ProdManual.pdf
  48. 48.
    Kalray, The KalRay multi-purpose-processing-array (MPPA) (2016), http://www.kalrayinc.com/kalray/products/#processors
  49. 49.
    P. Couvert, High speed IO processor for NVMe over fabric (NVMeoF), in Flash Memory Summit, Aug 2016Google Scholar
  50. 50.
    J. Yang, D.B. Minturn, F. Hady, When polling is better than interrupt, in USENIX Conference on File and Storage Technologies, Feb 2012Google Scholar
  51. 51.
    F. Hady, Wicked fast storage and beyond, in Non Volatile Memory Workshop, Mar 2016Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • L. Zuolo
    • 1
  • C. Zambelli
    • 2
  • Rino Micheloni
    • 1
  • P. Olivo
    • 2
  1. 1.Microsemi CorporationVimercateItaly
  2. 2.Engineering DepartmentUniversità di FerraraFerraraItaly

Personalised recommendations