Advertisement

Low-Density Parity-Check (LDPC) Codes

  • E. Paolini
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 37)

Abstract

In this chapter, low-density parity-check (LDPC) codes, a class of powerful iteratively decodable error correcting codes, are introduced. The chapter first reviews some basic concepts and results in information theory such as Shannon’s channel capacity and channel coding theorem. It then overviews the flash memory channel model. Next, it addresses binary LDPC codes describing both their structure and efficient implementation, and their belief propagation and reduced-complexity decoding algorithms. Non-binary LDPC codes and their belief propagation decoding algorithm are also addressed. Finally simulation results are provided.

Notes

Acknowledgements

The author wishes to thank R. Micheloni and A. Marelli for their careful proofcheck of this chapter.

References

  1. 1.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, 1991)Google Scholar
  2. 2.
    R.D. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. S. Lond. 119, 173–181 (1928)ADSCrossRefGoogle Scholar
  3. 3.
    R. Micheloni, L. Crippa, A. Marelli (eds.), Inside NAND Flash Memories (Springer, 2010)Google Scholar
  4. 4.
    N. Mielke et al., Bit error rate in NAND Flash memories, in Proceedings of the 2008 IEEE International Symposium on Reliability Physics, Phoenix, AZ, USA, April/May 2008, pp. 9–19Google Scholar
  5. 5.
    J. Wang, T. Courtade, H. Shankar, R. Wesel, Soft information for LDPC decoding in flash: mutual-information optimized quantization, in Proceedings of the 2011 IEEE Global Telecommunication Conference, Houston, TX, USA, Dec 2011Google Scholar
  6. 6.
    S. Li, T. Zhang, Improving multi-level NAND flash memory storage reliability using concatenated BCH-TCM coding. IEEE Trans. VLSI 18, 1412–1420 (2010)CrossRefGoogle Scholar
  7. 7.
    R.G. Gallager, Low-Density Parity-Check Codes (MIT Press, Cambridge, Massachusetts, 1963)zbMATHGoogle Scholar
  8. 8.
    C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: turbo-codes, in Proceedings of the 2003 International Symposium on Communication, vol. 2, May 1993, pp. 1064–1070Google Scholar
  9. 9.
    T. Richardson, R. Urbanke, The renaissance of Gallager’s low-density parity-check codes. IEEE Commun. Mag. 41, 126–131 (2003)CrossRefGoogle Scholar
  10. 10.
    N. Bonello, S. Chen, L. Hanzo, Low-density parity-check codes and their rateless relatives. IEEE Commun. Surv. Tutor. 13, 3–26 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Tanner, A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27, 533–547 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Fossorier, Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 50, 1788–1793 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Z. Li, L. Chen, L. Zeng, S. Lin, W. Fong, Efficient encoding of low-density parity-check codes. IEEE Trans. Commun. 54, 71–81 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Mansour, High-performance decoders for regular and irregular repeat-accumulate codes, in Proceedings of the IEEE 2004 IEEE Global Telecommunications Conference, Nov/Dec 2004, pp. 2583–2588Google Scholar
  15. 15.
    T. Richardson, M. Shokrollahi, R. Urbanke, Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory 47, 619–637 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S.-Y. Chung, G.D. Forney Jr., T. Richardson, R. Urbanke, On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 5, 58–60 (2001)CrossRefGoogle Scholar
  17. 17.
    J. Thorpe, Low-density parity-check (LDPC) codes constructed from protographs, JPL INP, Technical Report, Aug 2003, pp. 42–154Google Scholar
  18. 18.
    J. Xu, L. Chen, L. Zeng, L. Lan, S. Lin, Construction of low-density parity-check codes by superposition. IEEE Trans. Commun. 53, 243–251 (2005)CrossRefGoogle Scholar
  19. 19.
    T. Richardson, R. Urbanke, The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inf. Theory 47, 599–618 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. ten Brink, Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans. Commun. 49, 1727–1737 (2001)CrossRefGoogle Scholar
  21. 21.
    G. Liva, M. Chiani, Protograph LDPC codes design based on EXIT analysis, in Proceedings of the 2007 IEEE Global Telecommunications Conference, Washington, DC, USA, Nov 2007, pp. 3250–3254Google Scholar
  22. 22.
    L. Chen, J. Xu, I. Djurdjevic, S. Lin, Near Shannon limit quasi cyclic low-density parity-check codes. IEEE Trans. Commun. 52, 1038–1042 (2004)CrossRefGoogle Scholar
  23. 23.
    H. Tang, J. Xu, Y. Kou, S. Lin, K. Abdel-Ghaffar, On algebraic construction of Gallager and circulant low density parity-check codes. IEEE Trans. Inf. Theory 50, 1269–1279 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Chiani, A. Ventura, Design and performance evaluation of some high-rate irregular low-density parity-check codes, in Proceedings of the 2001 Global Telecommunication Conference, San Antonio, TX, USA, Nov 2001, pp. 990–994Google Scholar
  25. 25.
    T. Richardson, Error floors of LDPC codes, in Proceedings of the 41st Annual Allerton Conference on Communication, Control and Computing (2003)Google Scholar
  26. 26.
    S. Abu-Surra, D. Divsalar, W.E. Ryan, Enumerators for protograph-based ensembles of LDPC and generalized LDPC codes. IEEE Trans. Inf. Theory 57, 858–886 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Flanagan, E. Paolini, M. Chiani, M. Fossorier, On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes. IEEE Trans. Inf. Theory 57, 3721–3737 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Cavus, C. Haymes, Low BER performance estimation of LDPC codes via application of importance sampling to trapping sets. IEEE Trans. Commun. 57, 1886–1888 (2009)CrossRefGoogle Scholar
  29. 29.
    L. Dolecek et al., Predicting error floors of structured LDPC codes: Deterministic bounds and estimates. IEEE J. Sel. Areas Commun. 27, 908–917 (2009)CrossRefGoogle Scholar
  30. 30.
    J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, X.-Y. Hu, Reduced-complexity decoding of LDPC codes. IEEE Trans. Commun. 53, 1288–1299 (2005)CrossRefGoogle Scholar
  31. 31.
    J. Zhao, F. Zarkeshvari, A. Banihashemi, On implementation of min-sum algorithm and its modifications for decoding low-density parity-check (LDPC) codes. IEEE Trans. Commun. 53, 549–554 (2005)CrossRefGoogle Scholar
  32. 32.
    J. Chen, M. Tanner, C. Jones, Y. Li, Improved min-sum decoding algorithms for irregular LDPC codes, in Proceedings of the 2005 IEEE International Symposium on Information Theory, Sept 2005, pp. 449–453Google Scholar
  33. 33.
    M. Davey, D. MacKay, Low-density parity check codes over GF(q). IEEE Commun. Lett. 2(6), 165–167 (1998)CrossRefGoogle Scholar
  34. 34.
    C. Poulliat, M. Fossorier, D. Declercq, Design of regular (2, dc) -LDPC codes over GF(q) using their binary images. IEEE Trans. Commun. 56(10), 1626–1635 (2008)CrossRefGoogle Scholar
  35. 35.
    G. Liva, E. Paolini, B. Matuz, S. Scalise, M. Chiani, Short turbo codes over high order fields. IEEE Trans. Commun. 61(6), 2201–2211 (2013)CrossRefGoogle Scholar
  36. 36.
    L. Dolecek, D. Divsalar, Y. Sun, B. Amiri, Non-binary protograph-based LDPC codes: enumerators, analysis, and designs. IEEE Trans. Inf. Theory 60(7), 3913–3941 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    E. Paolini, M. Flanagan, Efficient and exact evaluation of the weight spectral shape and typical minimum distance of protograph LDPC Codes. IEEE Commun. Lett. 20(11), 2141–2144 (2016)CrossRefGoogle Scholar
  38. 38.
    X.-Y. Hu, M. Fossorier, E. Eleftheriou, On the computation of the minimum distance of low-density parity-check codes, in Proceedings of the 2004 International Conference on Communication, June 2004, pp. 767–771Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.DEI, University of BolognaBolognaItaly

Personalised recommendations