In Vitro Production of Some Important Secondary Metabolites from Zingiber Species

  • Sanatombi Rajkumari
  • K. Sanatombi


Many higher plants are major sources of natural products which are used as pharmaceuticals, flavor and fragrances, dye and pigments, pesticides, and food additives. The search for new plant-derived chemicals has become a priority in current and future efforts toward sustainable conservation and rational utilization of biodiversity. In the recent years, the evolving commercial importance of secondary metabolites has led to a great interest in the production and enhancement of bioactive plant metabolites by means of tissue culture technologies. Plant cell culture systems represent a potential renewable source of valuable medicinal compounds which are not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis as well as provide more resistance to pathogens and adverse environmental and climatic conditions. Different strategies, using an in vitro system such as undifferentiated cell cultures and hairy root culture, have been extensively studied to improve the production of plant chemicals as they are more genetically stable. Among the medicinal plants, Zingiber is also considered as an important genus comprising many plant species that has received much attention in food and medicinal industry due to the presence of different secondary metabolites that contribute to its diverse biological activities. Based on this limelight, the present chapter focusses on several studies of in vitro production of important secondary metabolites from different Zingiber species. Moreover, the applications and strategies for the enhancement of these valuable metabolites by using in vitro technology are also discussed in this chapter.


Elicitors In vitro culture Secondary metabolites Zingiber species 


  1. Alemdar, S., Hartwig, S., Frister, T., et al. (2016). Heterologous expression, purification, and biochemical characterization of α-humulene synthase from Zingiber zerumbet smith. Applied Biochemistry and Biotechnology, 178(3), 474–489.CrossRefPubMedGoogle Scholar
  2. Aly, U. I., Abbas, M. S., Taha, H. S., et al. (2013). Characterization of 6-gingerol for in vivo and in vitro ginger (Zingiber officinale) using high performance liquid chromatography. Global Journal of Botanical Science, 1, 9–17.CrossRefGoogle Scholar
  3. Ammon, H. P. T. (1991). Pharmacology of Curcuma longa. Planta Medica, 57, 1–7.CrossRefPubMedGoogle Scholar
  4. Anasori, P., & Asghari, G. (2008). Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Research in Pharmaceutical Sciences, 3, 59–63.Google Scholar
  5. Baranowski, J. D. (1985). Storage stability of processed ginger paste. Journal of Food Science, 50, 932–933.CrossRefGoogle Scholar
  6. Bhattarai, S., Tran, V. H., & Duke, C. C. (2001). The stability of gingerol and shogaol in aqueous solutions. Journal of Pharmaceutical Sciences, 90(10), 1658–1664.CrossRefPubMedGoogle Scholar
  7. Bua-in, S., Paisooksantivatana, Y., Weimer, B. C., et al. (2014). Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1) in Cassumunar ginger (Zingiber montanum (Koenig) Link Ex Dietr.). Archives of Biological Sciences Belgrade, 66(4), 1321–1331.CrossRefGoogle Scholar
  8. Cafino, E. J. V., Lirazan, M. B., & Marfori, E. C. (2016). A simple HPLC method for the analysis of [6]-gingerol produced by multiple shoot culture of ginger (Zingiber officinale). International Journal of Pharmacognosy and Phytochemical Research, 8(1), 38–42.Google Scholar
  9. Chamratpan, S., & Homchuen, S. (2012). Ethnobotany in upper northeastern Thailand. Cha-Am Petchaburi: Bali Lau Ent Media Hawaii, USA.Google Scholar
  10. Chari, K. L. N., Manasa, D., Srinivas, P., et al. (2013). Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry, 139, 509–514.CrossRefGoogle Scholar
  11. Chinnici, F., Bendini, A., Gaiani, A., et al. (2004). Radical scavenging activity of peels and pulps from cv. Golden delicious apples as related to their phenolic composition. Journal of Agricultural and Food Chemistry, 52, 4684–4689.CrossRefPubMedGoogle Scholar
  12. Croteau, R. (1987). Biosynthesis and catabolism of monoterpenoids. Chemical Reviews, 87, 929–954.CrossRefGoogle Scholar
  13. da Silva, M. F., Pescador, R., Rebelo, R. A., et al. (2008). The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Brazilian Journal of Plant Physiology, 20(2), 119–130.CrossRefGoogle Scholar
  14. Dehghani, I., Mostajerana, A., & Asgharib, G. (2011). In vitro and in vivo production of gingerols and zingiberene in ginger plant (Zingiber officinale Roscoe). Iranian Journal of Pharmaceutical Sciences, 7(2), 117–121.Google Scholar
  15. Denyer, C. V., Jackson, P., Loakes, D. M., et al. (1994). Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). Journal of Natural Products, 57(5), 658–662.CrossRefPubMedGoogle Scholar
  16. Devi, N. B., Singh, P. K., & Das, A. K. (2014). Ethnomedicinal utilization of Zingiberaceae in the valley districts of Manipur. Journal of Environmental Science, Toxicology and Food Technology, 8(2), 21–23.CrossRefGoogle Scholar
  17. Dicosmo, F., & Misawa, M. (1995). Plant cell and tissue culture: Alternatives for metabolite production. Biotechnology Advances, 13(3), 425–453.CrossRefPubMedGoogle Scholar
  18. Doran, P. M. (2000). Foreign protein production in plant tissue cultures. Current Opinion in Biotechnology, 11, 199–204.CrossRefPubMedGoogle Scholar
  19. Dugasani, S., Pichika, M. R., Nadarajah, V. D., et al. (2010). Comparative antioxidant and anti-inflammatory effects of [6]- gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology, 127(2), 515–520.CrossRefPubMedGoogle Scholar
  20. El-Nabarawy, M. A., El-Kafafi, S. H., Hamza, M. A., et al. (2015). The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Annals of Agricultural Science, 60(1), 1–9.CrossRefGoogle Scholar
  21. El-Tamer, M. K., Smeets, M., Holthuysen, N., et al. (2003). The influence of monoterpene synthase transformation on the odour of tobacco. Journal of Biotechnology, 106, 15–21.CrossRefPubMedGoogle Scholar
  22. Farhath, S., Vijaya, P. P., & Vimal, M. (2013). Immunomodulatory activity of geranial, geranial acetate, gingerol, and eugenol essential oils: Evidence for humoral and cell-mediated responses. Avicenna Journal of Phytomedicine, 3(3), 224–230.PubMedCentralPubMedGoogle Scholar
  23. Fernandes, E. S., Passos, G. F., Medeiros, R., et al. (2007). Anti-inflammatory effects of compounds alpha humulene and (−) trans-caryophyllene isolated from the essential oil of Cordia verbenaceae. European Journal of Pharmacology, 569(3), 228–236.CrossRefPubMedGoogle Scholar
  24. Figueiredo, A. C., Barroso, J. G., Pedro, L. G., et al. (2008). Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour and Fragrance Journal, 23(4), 213–226.CrossRefGoogle Scholar
  25. Fujisawa, M., Harada, H., & Kenmoku, H. (2010). Cloning and characterization of a novel gene that encodes (S)-beta-bisabolene synthase from ginger, Zingiber officinale. Planta, 232, 121–130.CrossRefPubMedGoogle Scholar
  26. Gagaoua, M., Hoggas, N., & Hafid, K. (2015). Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. International Journal of Biological Macromolecules, 73, 245–252.CrossRefPubMedGoogle Scholar
  27. Gagaoua, M., Hoggas, N., & Hafid, K. (2016). Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. Data in Brief, 6, 634–639.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 12, 1101–1114.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., et al. (2010). Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 11, 3885–3897.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Ghasemzadeh, A., Jaafar, H. Z. E., Karimi, E., et al. (2012). Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger. BMC Complementary and Alternative Medicine, 12, 229.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Ghosh, S., & Sen-Mandi, S. (2015). SNP in chalcone synthase gene is associated with variation of 6-gingerol content in contrasting landraces of Zingiber officinale Roscoe. Gene, 566, 184–188.CrossRefPubMedGoogle Scholar
  32. Gong, F., Fung, Y. S., & Liang, Y. Z. (2004). Determination of volatile components in ginger using gas chromatography-mass spectrometry with resolution improved by data processing techniques. Journal of Agricultural and Food Chemistry, 52, 6378–6383.CrossRefPubMedGoogle Scholar
  33. Govindarajan, V. S. (1982). Ginger-chemistry, technology and quality evaluation: Part 1. Critical Reviews in Food Science and Nutrition, 17, 1–96.PubMedGoogle Scholar
  34. Govindarajan, V. S., & Connell, D. W. (1983). Ginger-chemistry, technology, and quality evaluation: Part 1. Critical Reviews in Food Science and Nutrition, 17, 1–96.CrossRefGoogle Scholar
  35. Gruenwald, J. (2004). PDR for herbal medicine (3rd ed.). Montvale: Thomson PDR.Google Scholar
  36. Hansen, G., & Wright, M. S. (1999). Recent advances in the transformation of plants. Trends in Plant Science, 4, 226–231.CrossRefPubMedGoogle Scholar
  37. Harold, M. (2004). On food and cooking: The science and lore of the kitchen (2nd ed.). New York: Scribner.Google Scholar
  38. Hikino, H., Kiso, Y., Kato, N., et al. (1985). Antihepatotoxic action of gingerols and diarylheptanoids. Journal of Ethnopharmacology, 14, 31–39.CrossRefPubMedGoogle Scholar
  39. Huang, Z., Wang, B., & Eaves, D. H. (2009). Total phenolics and antioxidant capacity of indigenous vegetables in the southeast unites states: Alabama collaboration for cardiovascular equity project. International Journal of Food Sciences and Nutrition, 60(2), 100–108.CrossRefPubMedGoogle Scholar
  40. Idris, E. D., Khalid, N., Ibrahim, H., et al. (2007). Production of zerumbone from in vitro derived rhizome of Zingiber zerumbet for pharmaceutical and cosmeceutical industry. In: 12th biological sciences graduate congress, University of Malaya, 17–19 December 2007.Google Scholar
  41. Iijima, Y., Koeduka, T., Suzuki, H., et al. (2014). Biosynthesis of geranial, a potent aroma compound in ginger rhizome (Zingiber officinale): Molecular cloning and characterization of geraniol dehydrogenase. Plant Biotechnology, 31, 525–534.CrossRefGoogle Scholar
  42. Iwasaki, Y., Morita, A., Iwasawa, T., et al. (2006). A non-pungent component of steamed ginger-[10]-shogaol-increases adrenaline secretion via the activation of TRPV1. Nutritional Neuroscience, 9, 169–178.PubMedGoogle Scholar
  43. Jalil, M., Annuar, M. S. M., Tan, B. C., et al. (2015). Effects of selected physicochemical parameters on zerumbone production of Zingiber zerumbet Smith cell suspension culture. Evid Based Complement Altern Med, 2015, 1–7.CrossRefGoogle Scholar
  44. Jansen, P. C. M. (1999). Minor species. In C. C. de Guzman & J. S. Siemonsma (Eds.), Plant resources of South East Asia. Spices (Vol. 13, pp. 245–272). Prosnea Foundation: Bogor.Google Scholar
  45. Jegannathan, S. D., Arul, S., & Dayalan, H. (2016). Zerumbone, a sesquiterpene, controls proliferation and induces cell cycle arrest in human laryngeal carcinoma cell line hep2. Nutrition and Cancer, 68(5), 865–872.CrossRefPubMedGoogle Scholar
  46. Karnchanatat, A., Tiengburanatam, N., Boonmee, A., et al. (2011). Zingipain, a cysteine protease from Zingiber ottensii valeton rhizomes with antiproliferative activities against fungi and human malignant cell lines. Preparative Biochemistry and Biotechnology, 41, 138–153.CrossRefPubMedGoogle Scholar
  47. Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plant Research, 3(13), 1222–1239.Google Scholar
  48. Keerthi, D., Geethu, C., Nair, R. A., et al. (2014). Metabolic profiling of Zingiber zerumbet following Pythium myriotylum infection: Investigations on the defensive role of the principal secondary metabolite, zerumbone. Applied Biochemistry and Biotechnology, 172(5), 2593–2603.CrossRefPubMedGoogle Scholar
  49. Khrimian, A., Shirali, S., & Guzman, F. (2015). Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes. Journal of Natural Products, 78, 3071–3074.CrossRefPubMedGoogle Scholar
  50. Kinney, A. J. (1998). Manipulating flux through plant metabolic pathways. Current Opinion in Plant Biology, 1, 173–178.CrossRefPubMedGoogle Scholar
  51. Kishore, N., & Dwivedi, R. S. (1992). Zerumbone: A potential fungi toxic agent isolated from Zingiber cassumunar Roxb. Mycopathologia, 120(3), 155–159.CrossRefGoogle Scholar
  52. Kiuchi, F., Shibuya, M., & Sankawa, U. (1982). Inhibitors of prostaglandin biosynthesis from ginger. Chemical & Pharmaceutical Bulletin, 30, 754–757.CrossRefGoogle Scholar
  53. Koo, H. J., & Gang, D. R. (2012). Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One, 7, 7.Google Scholar
  54. Lai, Y. S., Lee, W. C., Lin, Y. E., et al. (2016). Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. Journal of Agricultural and Food Chemistry, 64, 2062–2071.CrossRefPubMedGoogle Scholar
  55. Lee, Y. (2016). Cytotoxicity evaluation of essential oil and its component from Zingiber officinale Roscoe. Toxicology Research, 32(3), 225–230.CrossRefGoogle Scholar
  56. Lessard, P. (1996). Metabolic engineering, the concept coalesces. Nature Biotechnology, 14, 1654–1655.CrossRefPubMedGoogle Scholar
  57. Ma, X., & Gang, D. R. (2006). Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale). Phytochemistry, 67, 2239–2255.CrossRefPubMedGoogle Scholar
  58. Mabberley, D. J. (1990). A portable dictionary of the higher plants. In The plant-book. Cambridge: University Press.Google Scholar
  59. Marden, M. C., Dieryck, W., Pagnier, J., et al. (1997). Human hemoglobin from transgenic tobacco. Nature, 342, 29–30.Google Scholar
  60. Matsuda, H., Nakamura, S., Iwami, J., et al. (2011). Invasion inhibitors of human fibrosarcoma HT1080 cells from the rhizomes of Zingiber cassumunar: Structures of phenylbutanoids, cassumunols. Chemical and Pharmaceutical Bulletin, 59(3), 365–370.CrossRefPubMedGoogle Scholar
  61. Millar, J. G. (1998). Rapid and simple isolation of zingiberene from ginger essential oil. Journal of Natural Products, 61, 1025–1026.CrossRefPubMedGoogle Scholar
  62. Min, B. R., Marsh, L. E., Brathwaite, K., et al. (2017). Effects of tissue culture and mycorrhiza applications in organic farming on concentrations of phytochemicals and antioxidant capacities in ginger (Zingiber officinale Roscoe) rhizomes and leaves. Journal of Food Science, 82(4), 873–881.CrossRefPubMedGoogle Scholar
  63. Moirangthem, M. D., Paonam, P. S., Khoirom, R. D., et al. (2016). In vitro free radical scavenging activity and radioprotective property of Zingiber kangleipakense (Kishor & Škorničk). International Journal of Pharmacognosy and Phytochemical Research, 8(1), 135–142.Google Scholar
  64. Muhammad, A. M. S. (2009). A study on microwave-assisted extraction of Zingiber aromaticum (pp. 1–56). Kuantan: Faculty of Chemical & Natural Resources Engineering, UMP.Google Scholar
  65. Murakami, A., Takahashi, M., Jiwajinda, S., et al. (1999). Identification of zerumbone in Zingiber zerumbet Smith as a potent inhibitor of 12-O-tetradecanoylphorbol-13-acetate-induced Epstein- Barr virus activation. Bioscience, Biotechnology, and Biochemistry, 63(10), 1811–1812.CrossRefPubMedGoogle Scholar
  66. Murthy, H. N., Lee, E. J., & Paek, K. Y. (2014). Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture, 118, 1–16.CrossRefGoogle Scholar
  67. Mustafa, T., Srivastava, K. C., & Jensen, K. B. (1993). Drug development report (9): Pharmacology of ginger, Zingiber officinale. Journal of Drug Development, 6, 24–39.Google Scholar
  68. Namdeo, A. G. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1, 69–79.Google Scholar
  69. Nandagopal, K., Halder, M., Dash, B., et al. (2017). Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone. Current Medicinal Chemistry, 7(1), 4108.Google Scholar
  70. Nishimura, O. (1995). Identification of the characteristic odorants in fresh rhizomes of ginger (Zingiber officinale roscoe) using aroma extract dilution analysis and modified multidimensional gas-chromatography mass-spectroscopy. Journal of Agricultural and Food Chemistry, 43, 2941–2945.CrossRefGoogle Scholar
  71. Ogawa, K., Miyoshi, T., Kitayama, T., et al. (2014). Locomotor-reducing effects and structural characteristics of inhaled zerumbone and tetrahydrozerumbone derivatives. Biological and Pharmaceutical Bulletin, 37(9), 1559–1563.CrossRefPubMedGoogle Scholar
  72. Okonogi, S., & Chaiyana, W. (2012). Enhancement of anticholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discoveries & Therapeutics, 6(5), 249–255.Google Scholar
  73. Pan, M. H., Hsieh, M. C., Hsu, P. C., et al. (2008). 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Molecular Nutrition & Food Research, 52(12), 1467–1477.CrossRefGoogle Scholar
  74. Park, G., Kim, H. G., Ju, M. S., et al. (2013). 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation. Acta Pharmacologica Sinica, 34, 1131–1139.PubMedCentralCrossRefPubMedGoogle Scholar
  75. Passosa, G. F., Fernandesa, E. S., da Cunha, F. M., et al. (2007). Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. Journal of Ethnopharmacology, 110(2), 323–333.CrossRefGoogle Scholar
  76. Pawar, N. V., Rai, S. R., Nimbalkar, M. S., et al. (2015). RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from in vitro cultures of Zingiber officinale roscoe. Plant Science Today, 2(1), 24–28.CrossRefGoogle Scholar
  77. Philipson, J. D. (1990). Plants as source of valuable products. In B. V. Chalwood & M. J. Rhodes (Eds.), Secondary products from plant tissue culture (pp. 1–21). Oxford: Clarendon Press.Google Scholar
  78. Picaud, S., Olsson, M. E., Brodelius, M., et al. (2006). Cloning, expression, purification and characterization of recombinant (+)-germacrene D synthase from Zingiber officinale. Archives of Biochemistry and Biophysics, 452, 17–28.CrossRefPubMedGoogle Scholar
  79. Priprem, A., Janpim, K., Nualkaew, S., et al. (2016). Topical niosome gel of Zingiber cassumunar Roxb. Extract for anti-inflammatory activity enhanced skin permeation and stability of compound D. AAPS PharmSci Tech, 17(3), 631–639.CrossRefGoogle Scholar
  80. Ramachandra, S. R., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 1001–1153.Google Scholar
  81. Rice-Evans, C. A., Miller, N. J., & Bolwell, P. G. (1995). The relative antioxidant activities of plant derived polyphenolic flavonoids. Free Radical Research, 22, 375–383.CrossRefPubMedGoogle Scholar
  82. Riyanto, S. (2003). Phytochemical studies and bioactivity tests of Murraya paniculata Jack, Aegle marmelos Correa and Zingiber amaricans Blume. Dissertation, Universiti Putra Malaysia.Google Scholar
  83. Riyanto, S. (2007). Identification of the isolated compounds from Zingiber amaricans BL. Rhizome. Indian Journal of Chemistry, 7(1), 93–96.Google Scholar
  84. Saifudin, A., Kadota, S., & Tezuka, Y. (2013). Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum. Journal of Natural Medicines, 67(2), 264–270.CrossRefPubMedGoogle Scholar
  85. Sajc, L., Grubisic, D., & Vunjak-Novakovic, G. (2000). Bioreactors for plant engineering: An outlook for further research. Biochemical Engineering Journal, 4, 89–99.CrossRefGoogle Scholar
  86. Sakamura, F., Ogiharat, K., Suga, T., et al. (1986). Volatile constituents of Zingiber officinale rhizomes produced by in vitro shoot tip culture. Phytochemistry, 25(6), 1333–1335.CrossRefGoogle Scholar
  87. Sanwal, S. K., Rai, N., & Singh, J. (2010). Antioxidant phytochemicals and gingerol content in diploid and tetraploid clones of ginger (Zingiber officinale roscoe). Scientia Horticulturae, 124, 280–285.CrossRefGoogle Scholar
  88. Schwab, W., Williams, D. C., Davis, E. M., et al. (2001). Mechanism of monoterpene cyclization: Stereochemical aspects of the transformation of noncyclizable substrate analogs by recombinant (−)-limonene synthase, (+)-bornyl diphosphate synthase and (−)-pinene synthase. Archives of Biochemistry and Biophysics, 392, 123–136.CrossRefPubMedGoogle Scholar
  89. Shinija, K., Preethi, T. P., Rakhi, K. P., et al. (2009). Micropropagation and chemical profiling of Zingiber zerumbet. Journal of Tropical Medicinal Plants, 10(1), 55–59.Google Scholar
  90. Shoji, N., Iwasa, A., Takemoto, T., et al. (1982). Cardiotonic principle of ginger (Zingiber officinale roscoe). Journal of Pharmaceutical Sciences, 71, 1174–1175.CrossRefPubMedGoogle Scholar
  91. Sirat, H. M., & Nordin, A. B. (1994). Essential oil of Zingiber ottensii valeton. Journal of Essential Oil Research, 6(6), 635–636.CrossRefGoogle Scholar
  92. Sivasothy, Y., Hamid, A., Hadi, A., et al. (2012). Spectaflavoside A, a new potent iron chelating dimeric flavonol glycoside from the rhizomes of Zingiber spectabile Griff. Bioorganic & Medicinal Chemistry Letters, 22, 3831–3836.CrossRefGoogle Scholar
  93. Sivasothy, Y., Sulaiman, S. F., Ooi, K. L., et al. (2013). Antioxidant and antibacterial activities of flavonoids and curcuminoids from Zingiber spectabile Griff. Food Control, 30, 714–720.CrossRefGoogle Scholar
  94. Stanly, C., Bhatt, A., Ali, H. M. D., et al. (2011). Evaluation of free radical scavenging activity and total phenolic content in the petiole-derived callus cultures of Zingiber zerumbet smith. Journal of Medicinal Plant Research, 5(11), 2210–2217.Google Scholar
  95. Suekawa, M., Ishige, A., Yuasa, K., et al. (1984). Pharmacological studies on ginger. I. Pharmacological action of pungent constituents, [6]-gingerol and [6]-shogaol. Journal of Pharmaceutics and Biopharmaceutics, 7, 836–848.Google Scholar
  96. Togar, B., Turkez, H., Tatar, A., et al. (2015). Cytotoxicity and genotoxicity of zingiberene on different neuron cell lines in vitro. Cytotechnology, 67(6), 939–946.CrossRefPubMedGoogle Scholar
  97. Varakumar, S., Umesh, K. V., & Singhal, R. S. (2017). Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 216, 27–36.CrossRefPubMedGoogle Scholar
  98. Wang, J. W., & Wu, J. Y. (2013). Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Biotechnology of Hairy Root Systems, 134, 55–89.CrossRefGoogle Scholar
  99. Whitmer, S., Van der Heijden, R., & Verpoorte, R. (2002). Plant biotechnology and transgenic plants. In K. M. Oksman-Caldentey & W. H. Barz (Eds.), Marcel & Dekker (pp. 373–405). New York: Basel.Google Scholar
  100. Wiart, C. (2012). Medicinal plants of China, Korea and Japan: Bioresources for tomorrow’s drugs and cosmetics (p. 454). Boca Raton: CRC Press.CrossRefGoogle Scholar
  101. Wongsamuth, R., & Doran, M. P. (1997). Production of monoclonal antibodies by tobacco hairy roots. Biotechnology and Bioengineering, 54(5), 401–415.CrossRefPubMedGoogle Scholar
  102. Wyk, B. E. V., & Wink, M. (2004). Medicinal plants of the world (pp. 355–356). Pretoria: Briza.Google Scholar
  103. Yu, F., Harada, H., Yamasaki, K., et al. (2008). Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet smith. FEBS Letters, 582(5), 565–572.CrossRefPubMedGoogle Scholar
  104. Yu, F., Okamoto, S., Harada, H., et al. (2011). Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis. Cellular and Molecular Life Sciences, 68(6), 1033–1040.CrossRefPubMedGoogle Scholar
  105. Zarate, R., & Yeoman, M. M. (1994). Studies of the cellular localization of the phenolic pungent principle of ginger, Z. officinale Roscoe. New Phytologist, 126(295), 300.Google Scholar
  106. Zarate, R., & Yeoman, M. M. (1996). Changes in the amounts of [6]-gingerol and derivatives during a culture cycle of ginger, Zingiber officinale. Plant Science, 121, 115–122.CrossRefGoogle Scholar
  107. Zheng, W., & Wang, S. Y. (2003). Oxygen radical absorption capacity of phenolics in blueberries, cranberries, chokeberries and lingonberries. Journal of Agricultural and Food Chemistry, 51, 502–509.CrossRefPubMedGoogle Scholar
  108. Zick, S. M., Djuric, Z., Ruffin, M. T., et al. (2008). Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiology, Biomarkers & Prevention, 17(8), 1930–1936.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sanatombi Rajkumari
    • 1
  • K. Sanatombi
    • 1
  1. 1.Department of BiotechnologyManipur UniversityImphalIndia

Personalised recommendations