Advertisement

Role of Secondary Metabolites for the Mitigation of Cadmium Toxicity in Sorghum Grown Under Mycorrhizal Inoculated Hazardous Waste Site

  • Prasann Kumar
  • Shweta Pathak
  • Mukul Kumar
  • Padmanabh Dwivedi
Chapter

Abstract

Apart from the many primary metabolites like carbohydrate, proteins, fats, and hormones, a number of organic compounds in plants are not synthesized in the principle stream, but they are most important for the plant functions. These compounds are secondary metabolites broadly classified in terpenes, alkaloids, and phenols. Nowadays, heavy metal contamination is the greatest concern worldwide. The role of secondary metabolites is well acquainted with facts that it imparts the significant effect in the mitigation of heavy metal toxicity in the plants. The FTIR data of the experiments indicate clearly that phenols, aldehyde, and ketones will play the critical role in the regulation of heavy metal toxicity in plants.

Keywords

Cadmium Phenol Secondary Metabolites Sorghum Toxicity 

Notes

Acknowledgment

Authors are thankful to Lovely Professional University, Jalandhar, Punjab, and the Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University for providing the support for this work.

References

  1. Aafi, N. E., Brhada, F., Dary, M., Maltouf, A. F., & Pajuelo, E. (2012). Rhizostabilization of metals in soils using Lupinusluteus inoculated with the metal resistant rhizobacteriumserratia sp. MSMC 541. International Journal of Phytoremediation, 14, 261–274.CrossRefPubMedGoogle Scholar
  2. Azcón, R., Perálvarez, M. D. C., Roldán, A., & Barea, J. M. (2010). Arbuscularmycorrhizal fungi, Bacilluscereus, and Candida parapsilosis from a multi contaminated soil alleviate metal toxicity in plants. Microbial Ecology, 59, 668–677.CrossRefPubMedGoogle Scholar
  3. Babu, A. G., & Reddy, S. (2011). Dual inoculation of arbuscularmycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water Air Soil Pollution, 219, 3–10.CrossRefGoogle Scholar
  4. Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Boca Raton: Lewis Publisher.Google Scholar
  5. Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V., Vangronsveld, J., & van der Lelie, D. (2004). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile organic pollutants. Nature and Biotechnology, 22, 583–588.CrossRefGoogle Scholar
  6. Barona, A., Aranguiz, I., & Elias, A. (2001). Metal associations in soils before and after EDTA extractive decontamination: Implications for the effectiveness of further clean-up procedures. Environmental Pollution, 113, 79–85.CrossRefPubMedGoogle Scholar
  7. Bouwman, L. A., Bloem, J., Romkens, P. F. A. M., & Japenga, J. (2005). EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes. Soil Biology and Biochemistry, 37, 271–278.CrossRefGoogle Scholar
  8. Braud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr, Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere, 74, 280–286.CrossRefPubMedGoogle Scholar
  9. Chen, S. Y., & Lin, J. G. (2001). Effect of substrate concentration on bioleaching of metal-contaminated sediment. Journal of Hazard Matter, 82, 77–89.CrossRefGoogle Scholar
  10. Chen, B., Shen, H., Li, X., Feng, G., & Christie, P. (2004). Effects of EDTA application and arbuscularmycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant and Soil, 261, 219–229.CrossRefGoogle Scholar
  11. Di Simine, C. D., Sayer, J. A., & Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28, 87–94.CrossRefGoogle Scholar
  12. Dickinson, N. M., & Pulford, I. D. (2005). Cadmium phytoextraction using short rotation coppice Salix: The evidence trail. Environmental International, 31, 609–613.CrossRefGoogle Scholar
  13. Diels, L., De Smet, M., Hooyberghs, L., & Corbisier, P. (1999). Heavy metals bioremediation of soil. Molecular Biotechnology, 12, 154–158.CrossRefGoogle Scholar
  14. Dimkpa, C. O., Svatos, A., Merten, D., Buchel, G., & Kothe, E. (2008). Hydroxamatesiderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vignaunguiculata L.) under nickel stress. Canadian Journal of Microbiology, 54, 163–172.CrossRefPubMedGoogle Scholar
  15. Dubbin, W. E., & Louise Ander, E. (2003). Influence of microbial hydroxamatesiderophores on Pb(II) desorption from a-FeOOH. Applied Geochemistry, 18, 1751–1756.CrossRefGoogle Scholar
  16. Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnological Advancement, 21, 383–393.CrossRefGoogle Scholar
  17. Herman, D., Artiola, J., & Miller, R. (1995). Removal of cadmium, lead and zinc from soil by a rhamno lipid biosurfactant. Environmental Science and Technology, 29, 2280–2285.CrossRefPubMedGoogle Scholar
  18. Hrynkiewicz, K., Dabrowska, G., Baum, C., Niedojadlo, K., & Leinweber, P. (2012). Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein mt1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Pollution, 223, 957–968.CrossRefGoogle Scholar
  19. Khan, A. G. (2006). Mycorrhizremediation an enhanced form of phytoremediation. Journal Zhejiang University Science B, 7, 503–514.CrossRefPubMedGoogle Scholar
  20. Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207.CrossRefPubMedGoogle Scholar
  21. Krupa, P., & Kozdrój, J. (2007). Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinussylvestris L.) seedlings. Water Air Soil Pollution, 182, 83–90.CrossRefGoogle Scholar
  22. Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: A beneficial plant microbe interaction. Molecular Plant Microbial Interaction, 17, 6–15.CrossRefGoogle Scholar
  23. Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.CrossRefPubMedGoogle Scholar
  24. Lombi, E., Zhao, F. J., Dunham, S. J., & Mcgrath, S. P. (2001). Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1916–1926.CrossRefGoogle Scholar
  25. Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248–258.CrossRefPubMedGoogle Scholar
  26. Madhaiyan, M., Poonguzhali, S., & Sa, T. (2007). Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere, 69, 220–228.CrossRefPubMedGoogle Scholar
  27. Majewska, M., & Kurek, E. (2005). Effect of microbial activity on Cd sorption/desorption processes in soil polluted with various Cd sources. Geological Research Abstract, 7, 04332.Google Scholar
  28. McGrath, S. P., Zhao, J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. In Advances in agronomy (pp. 1–56). London: Academic.Google Scholar
  29. Meharg, A. A. (2003). The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research, 107, 1253–1265.CrossRefPubMedGoogle Scholar
  30. Mulligan, C. N., Yong, R. N., Gibbs, B. F., James, S., & Bennett, H. P. J. (1999). Metal removal from contaminated soils and sediments by biosurfactants surfactin. Environmental Science Technology, 33, 3812–3820.CrossRefGoogle Scholar
  31. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.CrossRefGoogle Scholar
  32. Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2012). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnology, 28, 142–149.CrossRefGoogle Scholar
  33. Romkens, P., Bouwman, L., Japenga, J., & Draaisma, C. (2002). Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 116, 109–121.CrossRefPubMedGoogle Scholar
  34. Shen, Z. G., Li, X. D., Wang, C. C., Chen, H. M., & Chua, H. (2002). Lead phytoextraction from contaminated soil with high-biomass plant species. Journal of Environmental Quality, 31, 1893–1900.CrossRefPubMedGoogle Scholar
  35. Shi, J. Y., Lin, H. R., Yuan, X. F., Chen, X. C., Shen, C. F., & Chen, Y. X. (2011). Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules, 16, 1409–1417.CrossRefPubMedGoogle Scholar
  36. Van Aken, B., Yoon, J. M., & Schnoor, J. L. (2004). Biodegradation of nitrosubstituted explosives TNT, RDX, and HMX by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populusdeltoides -nigra DN34). Applied Environmental Microbiology, 70, 508–517.CrossRefPubMedGoogle Scholar
  37. Vivas, A., Voros, I., Biro, B., Barea, J. M., Ruiz-Lozano, J. M., & Azcon, R. (2003). Beneficial effects of indigenous Cd tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.CrossRefGoogle Scholar
  38. Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth promoting rhizobacteria for bioremediation. Environmental International, 33, 406–413.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Prasann Kumar
    • 1
  • Shweta Pathak
    • 2
  • Mukul Kumar
    • 3
  • Padmanabh Dwivedi
    • 2
  1. 1.Department of Agronomy, School of AgricultureLovely Professional UniversityJalandharIndia
  2. 2.Department of Plant Physiology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of Botany and Plant PhysiologyMBACSaharsaIndia

Personalised recommendations