Characterization of a Secondary Metabolite from Aegle marmelos (Vilva Tree) of Western Ghats

  • Vellingiri Manon Mani
  • Arockiam Jeyasundar Parimala Gnana Soundari


The current world is emphasized to create new therapeutic drugs from natural sources to compete the various life-threatening diseases. This investigation has mainly focused to develop prospective metabolite to treat cancer. The bioactive metabolite has been targeted to be produced by a medicinal tree Aegle marmelos (Vilva tree) for anticancer potentiality. The stated medicinal tree secretes several metabolites which have been used extensively in traditional medicine to treat various diseases and disorders. This current research aimed to extract a single bioactive metabolite through preliminary analysis such as antimicrobial and antioxidant assessment against different clinical bacterial and fungal pathogens. The crude metabolites extract from branch sample of Vilva tree explored the maximum activity, so it was taken for purification process by chromatographic techniques. On purification through HPLC analysis, about seven different fractions were eluted, and those were determined for antioxidant and antimicrobial assessment. MF4 fraction explored its maximum activity at minimum concentration for both assessment. This MF4 compound on chemical characterization was found to be 5-acetoxytridecane, a potential compound and it evinced good anti-angiogenic activity through HET-CAM testing which manifested a strong anticancer potentiality.


Aegle marmelos Angiogenesis Anticancer HET-CAM Secondary metabolites 


  1. Baker, D., Mocek, U., & Garr, C. (2000). Natural products vs. combinatorials: A case study. In S. K. Wrigley, M. A. Hayes, R. Thomas, E. J. T. Chrystal, & N. Nicholson (Eds.), Biodiversity: New leads for pharmaceutical and agrochemical industries (pp. 66–72). Cambridge: The Royal Society of Chemistry.Google Scholar
  2. Barry, A. L., Garcia, F., & Thruppm, L. D. (1970). An improved single disc method for testing the antibiotic susceptibility for rapidly growing pathogens. American Journal of Clinical Pathology, 53, 149–158.CrossRefPubMedGoogle Scholar
  3. Bauer, A. W., Kirby, W. M. M. M., Sherris, J. C., & Turch, M. (1966). Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 45(4), 493–496.Google Scholar
  4. Blancher, C., Moore, J. W., Robertson, N., & Harris, A. L. (2001). Effects of Ras and Von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Research, 61(19), 7349–7355.PubMedGoogle Scholar
  5. Bristy, A. H. M., Hasan, N., Alam, N., Wahed, T. B., Roy, P., & Alam, K. M. K. (2017). Characterization of antioxidant and cytotoxic potential of methanolic extracts of different parts of Aegle marmelos (L.). International Journal of Pharmaceutical Sciences and Research, 8(3), 1476–1484.Google Scholar
  6. Costa-Lotufo, L. V., Khan, M. T., Ather, A., Wilke, D., Jimenez, P. C., Pessoa, C., de Moraes, M. E., & de Moraes, M. O. (2005). Journal of Ethnopharmacology, 99(1), 21–30.CrossRefPubMedGoogle Scholar
  7. Dinis, T. C. P., Madeira, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Journal of Archives Biochemisty and Biophysics, 315, 161–169.CrossRefGoogle Scholar
  8. Engelman, J. A. (2009). Targeting PI3K Signalling in cancer: Opportunities, challenges and limitations. Nature Reviews. Cancer, 9(8), 550–562.CrossRefPubMedGoogle Scholar
  9. Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. The New England Journal of Medicine, 285, 1182–1186.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Gordon, M. H. (1990). The mechanism of antioxidant action in vitro. In H. BJF (Ed.), Food antioxidants (pp. 1–18). London: Elsevier Applied Sciences.Google Scholar
  11. Gracia, O. B., Castilo, J., Marin, F. R., Ortuno, A., & Rio, D. (1997). JAD: Uses and properties of citrus flavonoids. Journal of Agricultural and Food Chemistry, 45, 4505–4515.CrossRefGoogle Scholar
  12. Kerbel, R. S. (1991). Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays, 13(1), 31–36.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Krishna, P. B., Krishna, G., Eppakayala, L., Prakasham, R. S., & Charya, M. A. S. (2014). Evaluation of the angiosuppresive activity of prodigiosin using the chorioallantoic membrane assay. International Journal of Chemical and Analytical Science, 5(1), 31–36.Google Scholar
  14. Liu, F., Ooi, V. E. C., & Chang, S. T. (1997). Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences, 60, 763–771.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Luepke, N. (1985). Hen’s egg chorioallantoic membrane test for irritation potential. Food and Chemical Toxicology, 23, 287–291.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Mani, V. M., Soundari, A. P. G., Karthiyaini, D., & Preethi, K. (2015). Bioprospecting for endophytic fungi and their metabolites from medicinal tree Aegle marmelos in western Ghats, India. Mycobiology, 43(3), 303–310.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Oyaizu, M. (1984). Studies on products of browning reactions: Antioxidative activities of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44, 307–315.CrossRefGoogle Scholar
  18. Pattnaik, S., Subramanyam, V. R., & Kole, C. (1996). Microbios, 86(349), 237–246.PubMedGoogle Scholar
  19. Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine, 9(6), 677–684.CrossRefPubMedGoogle Scholar
  20. Rajadurai, M., & Prince, P. S. (2005). Singapore Medical Journal, 46(2), 78–81.PubMedPubMedCentralGoogle Scholar
  21. Rani, P., & Khullar, N. (2004). Phytotherapy Research, 18(8), 670–673.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Staton, C. A., Brown, N. J., & Reed, M. W. (2009). Current status and future prospects for anti-Angiogenic therapies in cancer. Expert Opinion on Drug Discovery, 4(9), 961–979.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Szabo, M. R. C., Iditoiu, C., Chambre, D., & Lupea, A. X. (2007). Improved DPPH determination for antioxidant activity, spectrophotometric assay. Chemical Papers, 61, 214–216.CrossRefGoogle Scholar
  24. Valdes, T. I., Kreutzer, D., & Moussy, F. (2001). The chick chorio-allantoic membrane as a novel in vivo model for the testing of biomaterials. Journal of Biomedical Materials Research, 62, 273–282.CrossRefGoogle Scholar
  25. Yildiz, C., Cetin, A., Demirci, F., Polat, Z. A., Kiyan, T., Altun, A., Cetin, M., Yildiz, O. K., & Goze, I. (2013). Anti angiogenic effects of diltiazem, imatinib and bevacizumab in the CAM assay. International Journal of Scientific and Research Publications, 3(8), 1–8.Google Scholar
  26. Yu, W., Zhao, Y., & Shu, B. (2004). The radical scavenging activities of radix puerariae isoflavonoids: A chemiluminescence study. Food Chemistry, 86, 525.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vellingiri Manon Mani
    • 1
    • 2
  • Arockiam Jeyasundar Parimala Gnana Soundari
    • 2
  1. 1.Department of BiotechnologyHindusthan College of Arts and ScienceCoimbatoreIndia
  2. 2.Department of Microbial BiotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations