Advertisement

Laurel (Laurus nobilis L.): A Less-Known Medicinal Plant to the World with Diffusion, Genomics, Phenomics, and Metabolomics for Genetic Improvement

  • Muhammad Azhar Nadeem
  • Muhammad Aasim
  • Saliha Kırıcı
  • Ünal Karık
  • Muhammad Amjad Nawaz
  • Abdurrahim Yılmaz
  • Hasan Maral
  • Khalid Mahmood Khawar
  • Faheem Shehzad Baloch
Chapter

Abstract

Medicinal plants have gained the world’s attention due to their application in various ways. Laurel (Laurus nobilis. L) is a very important medicinal plant of the Mediterranean region. Traditionally this plant has been successfully used in medicine, and its essential oil has great importance. Genomics, breeding, and metabolomics of different crops have remained the main focus of researchers, which made this plant to less known to the world. Most of the researchers only worked about the essential oil and its antibacterial and antioxidant activities. However, still almost no work has been done about the breeding aspects of this important plant. The present review offers an overview about the origin, diffusion, genomics, phenomics, breeding, and metabolomics of laurel. This information would be very helpful for the researchers who are interested in the breeding of this plant.

Keywords

Laurel Laurus nobilis Genomics Breeding Phenomics Metabolomics 

References

  1. Afifi, F. U., Khalil, E., Tamimi, S. O., & Disi, A. (1997). Evaluation of the gastroprotective effect of Laurus nobilis seeds on ethanol induced gastric ulcer in rats. Journal of Ethnopharmacology, 58(1), 9–14.CrossRefPubMedGoogle Scholar
  2. Ahloowalia, B. S., & Maluszynski, M. (2001). Induced mutations–a new paradigm in plant breeding. Euphytica, 118(2), 167–173.CrossRefGoogle Scholar
  3. Al Gabbiesh, A. H., Ghabeish, M., Kleinwächter, M., & Selmar, D. (2015). Plant regeneration through somatic embryogenesis from calli derived from leaf bases of Laurus nobilis L.(Lauraceae). Plant Tissue Culture and Biotechnology, 24(2), 213–221.CrossRefGoogle Scholar
  4. Alcaraz-Meléndez, L., Delgado-Rodríguez, J., & Real-Cosío, S. (2004). Analysis of essential oils from wild and micropropagated plants of damiana (Turnera diffusa). Fitoterapia, 75(7), 696–701.CrossRefPubMedGoogle Scholar
  5. Amin, G., Sourmaghi, M. S., Jaafari, S., Hadjagaee, R., & Yazdinezhad, A. (2007). Influence of phenological stages and method of distillation on Iranian cultivated bay leaves volatile oil. Pakistan Journal of Biological Sciences, 10(17), 2895–2899.CrossRefPubMedGoogle Scholar
  6. Anonymous. (2015). Product factsheet culinary dried herbs in Europe. https://www.cbi.eu/.../product-factsheet-europe-dried-herbs, date: 22.9.2017.
  7. Anonymous. (2017). TUIK, The production of non wood forest products, 1988–2016.Google Scholar
  8. Aqili Khorasani, M. H. (1991). Collection of drugs (Materia media) (pp. 388–389). Tehran: Enqelab-e-Eslami Publishing and Educational Organization.Google Scholar
  9. Arroyo, J. M., Rigueiro, C., Rodríguez, R., Hampe, A., Valido, A., Rodríguez-Sánchez, F., & Jordano, P. (2010). Isolation and characterization of 20 microsatellite loci for laurel species (Laurus, Lauraceae). American Journal of Botany, 97(5), e26–e30.CrossRefPubMedGoogle Scholar
  10. Arroyo-García, R., Martínez-Zapater, J. M., Prieto, J. F., & Álvarez-Arbesú, R. (2001). AFLP evaluation of genetic similarity among laurel populations (Laurus L.). Euphytica, 122(1), 155–164.CrossRefGoogle Scholar
  11. Aytürk, Ö., & Meral, Ü. N. (2012). Structural analysis of reproductive development in staminate flowers of Laurus nobilis L. Notulae Scientia Biologicae, 4(1), 31.CrossRefGoogle Scholar
  12. Baloch, F. S., Karaköy, T., Demirbaş, A., Toklu, F., Özkan, H., & Hatipoğlu, R. (2014). Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turkish Journal of Agriculture and Forestry, 38, 591–602.CrossRefGoogle Scholar
  13. Baloch, F. S., Alsaleh, A., Shahid, M. Q., Çiftçi, V., de Miera, L. E., Aasim, M., Nadeem, M. A., Aktaş, H., Özkan, H., & Hatipoğlu, R. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One, 12(1), e0167821.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Barla, A., Topçu, G., Öksüz, S., Tümen, G., & Kingston, D. G. (2007). Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food chemistry, 104, 1478–1484.CrossRefGoogle Scholar
  15. Benmahioul, B., Dorion, N., Kaid-Harche, M., & Daguin, F. (2012). Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.). Plant Cell, Tissue and Organ Culture (PCTOC), 108, 353–358.CrossRefGoogle Scholar
  16. Billotte, N., Jourjon, M. F., Marseillac, N., Berger, A., Flori, A., Asmady, H., Adon, B., Singh, R., Nouy, B., Potier, F., & Cheah, S. C. (2010). QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theoretical and Applied Genetics, 120(8), 1673–1687.CrossRefPubMedGoogle Scholar
  17. Boza, A., & Hepaksoy, S. (2016). Some leaf properties of natural Laurus nobilis L. population in Karaburun peninsula (Izmir/Turkey). In VII International Scientific Agriculture Symposium, “Agrosym 2016”, 6–9 October 2016, Jahorina, Bosnia and Herzegovina. PRO 2016 (pp. 717–722). University of East Sarajevo, Faculty of Agriculture.Google Scholar
  18. Brachi, B., Morris, G. P., & Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. Genome Biology, 12(10), 232.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Brás, S., Mendes-Bastos, P., Amaro, C., & Cardoso, J. (2015). Allergic contact dermatitis caused by laurel leaf oil. Contact dermatitis, 72(6), 417–419.Google Scholar
  20. Buerkle, C. A., Wolf, D. E., & Rieseberg, L. H. (2003). The origin and extinction of species through hybridization. In Population viability in plants 2003 (pp. 117–141). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  21. Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., Coppola, R., & De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 22, 930.CrossRefGoogle Scholar
  22. Chabane, D., Assani, A., Bouguedoura, N., Haïcour, R., & Ducreux, G. (2007). Induction of callus formation from difficile date palm protoplasts by means of nurse culture. Comptes Rendus Biologies, 330(5), 392–401.CrossRefPubMedGoogle Scholar
  23. Charlesworth, B. (1991). The evolution of sex chromosomes. Science, 251(4997), 1030–1033.CrossRefPubMedGoogle Scholar
  24. Chen, Y. C., & Chang, C. (2009). Plant regeneration through somatic embryogenesis from young leaves of Cinnamomum kanehirae Hayata. Taiwan Journal of Forest Science, 24, 117–125.Google Scholar
  25. Cherrat, L., Espina, L., Bakkali, M., García-Gonzalo, D., Pagán, R., & Laglaoui, A. (2014). Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. Journal of the Science of Food and Agriculture, 94(6), 1197–1204.CrossRefPubMedGoogle Scholar
  26. Chmit, M., Kanaan, H., Habib, J., Abbass, M., Mcheik, A., & Chokr, A. (2014). Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pacific Journal of Tropical Medicine, 7, 546–552 [Google Scholar] [CrossRef].CrossRefGoogle Scholar
  27. Choi, Y. A., Tao, R., Yonemori, K., & Sugiura, A. (2003). Genomic in situ hybridization between persimmon (Diospyros kaki) and several wild species of Diospyros. Journal of the Japanese Society for Horticultural Science, 72(5), 385–388.CrossRefGoogle Scholar
  28. Chourfi, A., Alaoui, T., & Echchgadda, G. (2014). In vitro propagation of the bay laurel (Laurus nobilis L) in Morocco. South Asian Journal of Experimental Biology, 96–103.Google Scholar
  29. Collard, B. C., Jahufer, M. Z., Brouwer, J. B., & Pang, E. C. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1–2), 169–196.CrossRefGoogle Scholar
  30. Conforti, F., Statti, G., Uzunov, D., & Menichini, F. (2006). Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biological and Pharmaceutical Bulletin, 29, 2056–2064.CrossRefPubMedGoogle Scholar
  31. Dadalioǧlu, I., & Evrendilek, G. A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis ), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agricultural and Food Chemistry, 52, 8255–8260.CrossRefPubMedGoogle Scholar
  32. Damiani, N., Fernández, N. J., Porrini, M. P., Gende, L. B., Álvarez, E., Buffa, F., Brasesco, C., Maggi, M. D., Marcangeli, J. A., & Eguaras, M. J. (2014). Laurel leaf extracts for honeybee pest and disease management: Antimicrobial, microsporicidal, and acaricidal activity. Parasitology Research, 113, 701–709.CrossRefPubMedGoogle Scholar
  33. Davis, P. H. (1982). Flora of Turkey and East Aegean Islands (Vol. 7, pp. 534–535). Edinburgh: Edinburgh University Press.Google Scholar
  34. Deputy, J., Ming, R., Ma, H., Liu, Z., Fitch, M., Wang, M., Manshardt, R., & Stiles, J. L. (2002). Molecular markers for sex determination in papaya (Carica papaya L.). TAG Theoretical and Applied Genetics, 106(1), 107–111.CrossRefPubMedGoogle Scholar
  35. Derwich, E., Benziane, Z., & Boukir, A. (2009). Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Australian Journal of Basic and Applied Sciences, 3, 3818–3824.Google Scholar
  36. Dias, M. I., Barros, L., Dueñas, M., Alves, R. C., Oliveira, M. B., Santos-Buelga, C., & Ferreira, I. C. (2014). Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample? Food Chemistry, 156, 339–346.CrossRefPubMedGoogle Scholar
  37. Ehrendorfer, F., Krendl, F., Habeler, E., & Sauer, W. (1968). Chromosome numbers and evolution in primitive angiosperms. Taxon, 17, 337–353.CrossRefGoogle Scholar
  38. Ekren, S., Yerlikaya, O., Tokul, H. E., Akpınar, A., & Accedil, M. (2013). Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. African Journal of Microbiology Research, 7(5), 383–388.CrossRefGoogle Scholar
  39. El, S. N., Karagozlu, N., Karakaya, S., & Sahın, S. (2014). Antioxidant and antimicrobial activities of essential oils extracted from Laurus nobilis L. leaves by using solvent-free microwave and hydrodistillation. Food and Nutrition Sciences, 5(02), 97.CrossRefGoogle Scholar
  40. Elmeer, K., & Mattat, I. (2012). Marker-assisted sex differentiation in date palm using simple sequence repeats. 3 Biotech, 2, 241–247.CrossRefPubMedCentralGoogle Scholar
  41. Endress, P. K. (1994). Floral structure and evolution of primitive angiosperms: Recent advances. Plant Systematics and Evolution, 192, 79–97.CrossRefGoogle Scholar
  42. Erat, A. Z., Tekocak, S., Yilmazer, C., & Bilir, N. (2016). Yield and characteristics of leaf in bay laurel (Laurus nobilis L.) populations.Google Scholar
  43. Farnsworth, N. R., & Soejarto, D. D. (1991). Global importance of medicinal plants. In The conservation of medicinal plants (pp. 25–51). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  44. Fernandez-Andrade, C. M., da Rosa, M. I., Borges, F., Iwanaga, C. C., Gonçalves, J. E., Cortez, D. O., Martins, C. V., Linde, G. A., Simões, M. A., Lobo, V. S., & Gazim, Z. C. (2016). Chemical composition and antifungal activity of essential oil and fractions extracted from the leaves of Laurus nobilis L. cultivated in southern Brazil. Journal of Medicinal Plants Research, 10, 865–871.CrossRefGoogle Scholar
  45. Franchi, G. G., Piotto, B., Nepi, M., Baskin, C. C., Baskin, J. M., & Pacini, E. (2011). Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. Journal of Experimental Botany, 62(15), 5267–5281.CrossRefPubMedGoogle Scholar
  46. Gros-Balthazard, M. (2013, November 1). Hybridization in the genus Phoenix: A review. Emirates Journal of Food and Agriculture, 25(11), 831.CrossRefGoogle Scholar
  47. Hajyzadeh, M., Cavusoglu, A., Sulusoglu, M., & Unver, T. (2013). DNA SSR fingerprinting analysis among cherry laurel (Prunus laurocerasus L.) types. Journal of Food, Agriculture & Environment, 11, 630–638.Google Scholar
  48. Hufford, L. A. (1996). The origin and early evolution of angiosperm stamens. In The anther: Form, function, and phylogeny (pp. 58–91). Cambridge: Cambridge University Press.Google Scholar
  49. Jain, S. M. (2012). In vitro mutagenesis for improving date palm (Phoenix dactylifera L.). Emirates Journal of Food and Agriculture, 24(5), 400.Google Scholar
  50. Jemâa, J. M., Tersim, N., Toudert, K. T., & Khouja, M. L. (2012). Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. Journal of Stored Products Research, 48, 97–104.CrossRefGoogle Scholar
  51. Juergens, U. R., Dethlefsen, U., Steinkamp, G., Gillissen, A., Repges, R., & Vetter, H. (2003). Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respiratory Medicine, 97, 250–256.CrossRefPubMedGoogle Scholar
  52. Kafkas, S., Cetiner, S., Perl-Treves, R., & Ada Nissim-Levi, A. N. (2001). Development of sex-associated RAPD markers in wild Pistacia species. The Journal of Horticultural Science and Biotechnology, 76(2), 242–246.CrossRefGoogle Scholar
  53. Khodaeiaminjan, M., Kafkas, E., Güney, M., & Kafkas, S. (2017). Development and linkage mapping of novel sex-linked markers for marker-assisted cultivar breeding in pistachio (Pistacia vera L.). Molecular Breeding, 37(8), 98.CrossRefGoogle Scholar
  54. Kress, W. J. (1986). Exineless pollen structure and pollination systems of tropical Heliconia (Heliconiaceae) (Linnean society symposium series No. 12, pp. 329–345). London: Academic.Google Scholar
  55. Kumar, S., Sing, J., & Sharma, A. (2001). Bay leaves. In K. V. Peter (Ed.), Handbook of herbs and spices (pp. 52–61). Boca Raton: CRC Press.CrossRefGoogle Scholar
  56. Laurent, B. (2007). Le grand livre des plantes aromatiques (Vol. 108). Paris: Rustica.Google Scholar
  57. Leung, A. Y., & Foster, S. (1999). Alloro, Enciclopedia delle Piante Medicinali; Aporie (pp. 30–31). Rome.Google Scholar
  58. Leung, A. Y., & Foster, S. (2003). Encyclopedia of common natural ingredients used in food, drugs and cosmetics (2nd ed. pp. 69–71). Hoboken: Wiley- Interscience.Google Scholar
  59. Liu, H., Cao, F., Yin, T., & Chen, Y. (2017). A highly dense genetic map for Ginkgo biloba constructed using sequence-based markers. Frontiers in Plant Science, 8, 1041.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Marzouki, H., Elaissi, A., Khaldi, A., Bouzid, S., Falconieri, D., Marongiu, B., Piras, A., & Porcedda, S. (2009). Seasonal and geographical variation of Laurus nobilis L. essential oil from Tunisia. The Open Natural Products Journal, 2, 86–91.CrossRefGoogle Scholar
  61. Mohamed, A. S., Ahmed, W., Rabia, S. S., & Mourad, M. M. (2016). Implications of morphology and molecular criteria in taxonomy of lauraceae juss. The Egyptian Journal of Experimental Biology (Botany), 45–52.Google Scholar
  62. Muñiz-Márquez, D. B., Martínez-Ávila, G. C., Wong-Paz, J. E., Belmares-Cerda, R., Rodríguez-Herrera, R., & Aguilar, C. N. (2013). Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrasonics Sonochemistry, 20, 1149–1154.CrossRefPubMedGoogle Scholar
  63. Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., comertpay, G., Yildiz, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Ozkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding; current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32, 261. http://sci-hub.tw/10.1080/13102818.2017.1400401.
  64. Nepi, M., Franchi, G. G., & Padni, E. (2001). Pollen hydration status at dispersal: Cytophysiological features and strategies. Protoplasma, 216(3–4), 171.CrossRefPubMedGoogle Scholar
  65. Nostro, A., Germano, M. P., D’angelo, V., Marino, A., & Cannatelli, M. A. (2000). Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters in Applied Microbiology, 30, 379–384.CrossRefPubMedGoogle Scholar
  66. Oliveira-Filho, A. A., Fernandes, H. M., & Assis, T. J. (2015). Lauraceae’s family: A brief review of cardiovascular effects. International Journal of Pharmacognosy and Phytochemical Research, 7, 22–26.Google Scholar
  67. Özcan, M., & Chalchat, J. C. (2005). Effect of different locations on the chemical composition of essential oils of laurel (Laurus nobilis L.) leaves growing wild in Turkey. Journal of Medicinal Food, 8, 408–411.CrossRefPubMedGoogle Scholar
  68. Pacini, E., Franchi, G. G., & Ripaccioli, M. (1999). Ripe pollen structure and histochemistry of some gymnosperms. Plant Systematics and Evolution, 217, 81–99.CrossRefGoogle Scholar
  69. Pacini, E., Sciannandrone, N., & Nepi, M. (2014). Floral biology of the dioecious species Laurus nobilis L.(Lauraceae). Flora-Morphology, Distribution, Functional Ecology of Plants, 209(3), 153–163.CrossRefGoogle Scholar
  70. Pannell, J. R., OBBARD, D. J., & BUGGS, R. J. (2004). Polyploidy and the sexual system: What can we learn from Mercurialis annua? Biological Journal of the Linnean Society, 82(4), 547–560.CrossRefGoogle Scholar
  71. Peixoto, L. R., Rosalen, P. L., Ferreira, G. L., Freires, I. A., de Carvalho, F. G., Castellano, L. R., & de Castro, R. D. (2017). Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Archives of Oral Biology, 73, 179–185.CrossRefPubMedGoogle Scholar
  72. Polat, S., Gülbaba, A. G., Tüfekçi, S., & Özkurt, A. (2009). Determination of the Most Suitable Leaf Harvesting Methods of Bay Laurel (Laurus nobilis L.) and Its Economy (The Case of Tarsus). Minister of Environment and Forestry Publish no: 391(56), 55p.Google Scholar
  73. Predieri, S. (2001). Mutation induction and tissue culture in improving fruits. Plant Cell, Tissue and Organ Culture, 64, 185–210.CrossRefGoogle Scholar
  74. Renner, S. S., & Ricklefs, R. E. (1995). Dioecy and its correlates in the flowering plants. American Journal of Botany, 82, 596–606.CrossRefGoogle Scholar
  75. Rodríguez-Sánchez, F., Guzmán, B., Valido, A., Vargas, P., & Arroyo, J. (2009). Late Neogene history of the laurel tree (Laurus L., Lauraceae) based on phylogeographical analyses of Mediterranean and Macaronesian populations. Journal of Biogeography, 36, 1270–1281.CrossRefGoogle Scholar
  76. Sahijram, L., Soneji, J. R., & Bollamma, K. T. (2003). Invited review: Analyzing somaclonal variation in micropropagated bananas (Musa spp.). In Vitro Cellular and Developmental Biology-Plant, 39, 551–556.CrossRefGoogle Scholar
  77. Said, C. M., & Hussein, K. (2014). Determination of the chemical and genetic differences of laurus collected from three different geographic and climatic areas in Lebanon. European Scientific Journal, ESJ, 10(10).Google Scholar
  78. Santa-Catarina, C., Hanai, L. R., Dornelas, M. C., Viana, A. M., & Floh, E. I. (2004). SERK gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez. (Lauraceae). Plant Cell, Tissue and Organ Culture, 79(1), 53–61.CrossRefGoogle Scholar
  79. Santoyo, S., Lloría, R., Jaime, L., Ibañez, E., Señoráns, F. J., & Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. chemical and functional characterization. European Food Research and Technology, 222, 565–571.CrossRefGoogle Scholar
  80. Sari, A. O., Oguz, B., & Bilgic, A. (2006). Breaking seed dormancy of laurel (Laurus nobilis L.). New Forests, 31, 403–408.CrossRefGoogle Scholar
  81. Shokoohinia, Y., Yegdaneh, A., Amin, G., & Ghannadi, A. (2014). Seasonal variations of Laurus nobilis L. leaves volatile oil components in Isfahan, Iran. Research Journal of Pharmacognosy, 1(3), 1–6.Google Scholar
  82. Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414.CrossRefGoogle Scholar
  83. Souayah, N., Khouja, M. L., Khaldi, A., Rejeb, M. N., & Bouzid, S. (2002). Breeding improvement of Laurus nobilis L. by conventional and in vitro propagation techniques. Journal of Herbs, Spices & Medicinal Plants, 9, 101–105.CrossRefGoogle Scholar
  84. Verdianrizi, M., & Hadjiakhoondi, A. (2008). Essential oil composition of Laurus nobilis L. of different growth stages growing in Iran. Zeitschrift für Naturforschung C, 63, 785–788.CrossRefGoogle Scholar
  85. Vital, P. G., & Rivera, W. L. (2009). Antimicrobial activity and cytotoxicity of Chromolaena odorata (L. f.) King and Robinson and Uncaria perrottetii (A. Rich) Merr. Extracts. Journal of Medicinal Plants Research, 3, 511–518.Google Scholar
  86. Witjaksono, W. (2003). Peran bioteknologi dalam pemuliaan tanaman buah tropika. In Seminar Nasional Peran Bioteknologi dalam Pengembangan Buah Tropika. Kementerian Riset dan Teknologi RI & Pusat Kajian Buah Buahan Tropika, IPB. Bogor 2003 (Vol. 9).Google Scholar
  87. Wu, Q., Chen, Y., Wang, Y., & Lin, L. (2015). Sex differential marker FD for rapid sex identification of Litsea cubeba. Genetics and Molecular Research, 14, 12820–12827.CrossRefPubMedGoogle Scholar
  88. Yalçın, H., Anık, M., Şanda, M. A., & Çakır, A. (2007). Gas chromatography/mass spectrometry analysis of Laurus nobilis essential oil composition of northern Cyprus. Journal of Medicinal Food, 10(4), 715–719.CrossRefPubMedGoogle Scholar
  89. Yaldiz, G., Çamlica, M., Nadeem, M. A., Nawaz, M. A., & Baloch, F. S. (2018). Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turkish Journal of Agriculture and Forestry, 42. http://sci-hub.tw/10.3906/tar-1708-32.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Muhammad Azhar Nadeem
    • 1
  • Muhammad Aasim
    • 2
  • Saliha Kırıcı
    • 3
  • Ünal Karık
    • 4
  • Muhammad Amjad Nawaz
    • 5
  • Abdurrahim Yılmaz
    • 1
  • Hasan Maral
    • 6
  • Khalid Mahmood Khawar
    • 7
  • Faheem Shehzad Baloch
    • 1
  1. 1.Department of Field Crops, Faculty of Agricultural and Natural SciencesAbant Izzet Baysal UniversityBoluTurkey
  2. 2.Department of BiotechnologyFaculty of Science, Necmettin Erbakan UniversityKonyaTurkey
  3. 3.Department of Field Crops, Faculty of AgricultureÇukurova UniversityAdanaTurkey
  4. 4.Aegean Agricultural Research InstituteMenemenTurkey
  5. 5.Department of BiotechnologyChonnam National UniversityChonnamRepublic of Korea
  6. 6.Ermenek Vocational School, Karamanoğlu Mehmetbey UniversityKaramanTurkey
  7. 7.Department of Field Crops, Faculty of AgricultureAnkara UniversityAnkaraTurkey

Personalised recommendations