Advertisement

Genetic Improvement of Medicinal and Aromatic Plants Through Haploid and Double Haploid Development

  • Sweta Sharma
  • Kshitij Vasant Satardekar
  • Siddhivinayak S. Barve
Chapter

Abstract

Medicinal and aromatic plants (MAPs) produce secondary metabolites that are pharmacologically and economically important. These compounds are distributed/limited in a particular species, genus, or family and are reported to play an important ecological role like pollinator attractants, adaptations to environmental and biological stresses (chemical defenses). The concentration of these secondary metabolites is very low and highly variable, thus making them high-value low-volume products. Advances in biotechnology, particularly haploid and double haploid (DH) production, have opened new avenues for breeding, genetics, transformation, and mapping studies in these MAPs. This will allow means for the commercial exploitation of such rare plants and the chemicals they produce in medicines, aromatic industries, and plant growth and for insect and weed control. This chapter details the different methods of producing haploids and DHs, factors influencing their generation, and their use in genetic improvement of these MAPs. Few MAP species in which haploid and DHs have been studied are also briefly discussed.

Keywords

Medicinal and aromatic plants Haploids Double haploids Androgenesis 

References

  1. Abbasi, B. H., Saxena, P. K., Murch, S. J., & Liu, C. Z. (2007). Echinacea biotechnology: Challenges and opportunities. In Vitro Cellular & Developmental Biology. Plant, 43, 481–492.CrossRefGoogle Scholar
  2. Abdollahi, M. R., Moieni, A., & Javaran, M. J. (2004). Interactive effects of shock and culture density on embryo induction in isolated microspore culture of Brassica napus L. cv. Global Iranian Journal of Biotechnology, 2, 97–100.Google Scholar
  3. Abdollahi, M. R., et al. (2009). An efficient method for transformation of pre-androgenic, isolated Brassica napus microspores involving microprojectile bombardment and Agrobacterium-mediated transformation. Acta Physiologiae Plantarum, 31(6), 1313–1317.Google Scholar
  4. Adamus, A., & Michalik, B. (2003). Anther cultures of carrot (Daucus carota L.). Folia Hortic, 15, 49–58.Google Scholar
  5. Åhman, I. M., Kazachkova, N. I., Kamnert, I. M., Hagberg, P. A., Dayteg, C. I., Eklund, G. M., Meijer, L. J. O., & Ekbom, B. (2006). Characterisation of transgenic oilseed rape expressing pea lectin in anthers for improved resistance to pollen beetle. Euphytica, 151(3), 321–330.Google Scholar
  6. Ahmadi, B., Ghadimzadeh, M., Moghaddam, A. F., & Alizadeh, K. (2011). Embryogenesis and plant regeneration from isolated microspores of Brassica napus L. under different incubation time. Journal of Food, Agriculture & Environment, 9(3&4), 434–437.Google Scholar
  7. Allshire, R. C., & Karpen, G. H. (2008). Epigenetic regulation of centromeric chromatin: Old dogs, new tricks? Nature Reviews. Genetics, 9(12), 923–937.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amatriaín, M. M., Svensson, J. T., Castillo, A. M., Cistué, L., Close, T. J., & Vallés, M. P. (2006). Transcriptome analysis of barley anthers: Effect of mannitol treatment on microspore embryogenesis. Physiologia Plantarum, 127, 551–560.CrossRefGoogle Scholar
  9. Amatriaín, M. M., Svensson, J. T., Castillo, A. M., Close, T. J., & Vallés, M. P. (2009). Microspore embryogenesis: Assignment of genes to embryo formation and green vs. albino plant production. Functional & Integrative Genomics, 9, 311–323.CrossRefGoogle Scholar
  10. Andersen, S. B. (2005). Haploids in the improvement of woody species. In C. E. Palmer, W. A. Keller, & K. Kasha (Eds.), Haploids in crop improvement II (Vol. 56, pp. 243–257). Heidelberg: Springer.CrossRefGoogle Scholar
  11. Andersen, B., Christiansen, I., & Arestveit, B. F. (1990). Carrot (Daucus carota L.): In vitro production of haploids and field trials 1 biotechnology in agriculture and forestry. In Y. P. S. Bajaj (Ed.), Haploids in crop improvement (Vol. 12). Berlin: Springer.Google Scholar
  12. Ashok Kumar, H. G., & Murthy, H. N. (2004). Effect of sugars and amino acids on Androgenesis of Cucumis sativus. Plant Cell Tissue and Organ Culture, 78(3), 201–208.CrossRefGoogle Scholar
  13. Aulinger, I. E., Peter, S. O., Schmid, J. E., & Stamp, P. (2003). Rapid attainment of a doubled haploid line from transgenic maize (Zea mays L.) plants by means of anther culture. In Vitro Cellular & Developmental Biology. Plant, 39(2), 165–170.CrossRefGoogle Scholar
  14. Bajaj, Y. P. S. (1990). In vitro production of haploids and their use in cell genetics and plant breeding. In Biotechnology in agriculture and forestry (Vol. 12, pp. 3–44). Berlin: Springer.Google Scholar
  15. Bandoniene, D., & Murkovic, M. (2002). The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on-line HPLC-DPPH method. Journal of Biochemical and Biophysical Methods, 53(1–3), 45–49.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Barrett, B. (2003). Medicinal properties of Echinacea: A critical review. Phytomedicine, 10, 66–86.PubMedCrossRefGoogle Scholar
  17. Bauer, R., & Wagner, H. (1991). Echinacea species as potential immune stimulatory drugs. In H. Wagner & N. R. Farnsworth (Eds.), Economic and medicinal plant research (pp. 253–321). New York: Academic.Google Scholar
  18. Bhat, J. G., & Murthy, H. N. (2007). Factors affecting in-vitro gynogenic haploid production in niger (Guizotia abyssinica (L. f.) Cass.). Plant Growth Regulation, 52, 241–248.CrossRefGoogle Scholar
  19. Bhatti, S., Aziz, A. N., & Sauve, R. (2001). Anther culture response of Echinacea cultivars. In 23rd annual university-wide research symposium, Tennessee State University, Nashville, TN, 20–21 March 2001.Google Scholar
  20. Biessels, G. J., Smale, S., Duis, S. E. J., Kamal, A., & Gispen, W. H. (2001). The effect of gamma-linolenic acid-alpha-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. Journal of the Neurological Sciences, 182(2), 99–106.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bilichak, A., Luu, J., & Eudes, F. (2015). Intracellular delivery of fluorescent protein into viable wheat microspores using cationic peptides. Frontiers in Plant Science, 28.Google Scholar
  22. Binarova, P., Hause, G., Cenklová, V., Cordewener, J. H. G., & Campagne, M. M. L. (1997). A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sexual Plant Reproduction, 10(4), 200–208.CrossRefGoogle Scholar
  23. Bishayee, A., Sarkar, A., & Chatterjee, M. (1995). Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. Journal of Ethnopharmacology, 47(2), 69–74.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Biswas, K., Kumar, A., Babaria, B. A., Prabhu, K., & Setty, R. S. (2010). Hepatoprotective effect of leaves of Peltophorum pterocarpum against paracetamol induced acute liver damage in rats. Journal of Basic and Clinical Pharmacology, 1(1), 10–15.Google Scholar
  25. Blakeslee, A. F., Belling, J., Farnham, M. E., & Bergner, A. D. (1922). A haploid mutant in the Jimson weed, Datura stramonium. Science, 55, 646–647.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bohanec, B. (2003). Ploidy determination using flow cytometry. In Doubled haploid production in crop plants: A manual, MaluszynskiGoogle Scholar
  27. Bohanec, B. (2009). Doubled haploid via gynogenesis. In A. Touraev, B. P. Forster, & S. M. Jain (Eds.), Advances in haploid production in higher plants (pp. 35–46). Berlin: Springer.CrossRefGoogle Scholar
  28. Bohanec, B., & Jakše, M. (1999). Variations in gynogenic response among long-day onion (Allium cepa L.) accessions. Plant Cell Reports, 18(9), 737–742.CrossRefGoogle Scholar
  29. Bohanec, B., Neskovic, M., & Vujicic, R. (1993). Anther culture and androgenetic plant regeneration in buckwheat (Fagopyrum esculentum Moench). Plant Cell, Tissue and Organ Culture, 35, 259–266.CrossRefGoogle Scholar
  30. Bohanec, B., Jakše, M., & Przywara, L. (2005). The development of onion (Allium cepa L.) embryo sacs in vitro and gynogenesis induction in relation to flower size. In Vitro Cellular & Developmental Biology. Plant, 41(4), 446–452.CrossRefGoogle Scholar
  31. Bueno, M. A., Gómez, A., Boscaiu, M., Manzanera, J. A., & Vicente, O. (1997). Stress-induced formation of haploid plants through anther culture in cork oak (Quercus suber). Physiologia Plantarum, 99(2), 335–341.CrossRefGoogle Scholar
  32. Cabral, A. L., Jordan, M. C., McCartney, C. A., You, F. M., Gavin Humphreys, D., MacLachlan, R., & Pozniak, C. J. (2014). Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.). BMC Plant Biology, 14(1), 1–12Google Scholar
  33. Calleberg, E., & Johansson, L. (1996). Effect of gelling agents on anther cultures. In S. M. Jain, S. K. Sopory, & R. E. Veilleux (Eds.), In vitro haploid production in higher plants (Vol. 23, pp. 189–203). Dordrecht: Springer.CrossRefGoogle Scholar
  34. Caredda, S., Doncoeur, C., Devaux, P., Sangwan, R. S., & Clément, C. (2000). Plastid differentiation during androgenesis in albino and nonalbino producing cultivars of barley (Hordeum vulgare L.). Sexual Plant Reproduction, 13, 95–104.CrossRefGoogle Scholar
  35. Caredda, S., Devaux, P., Sangwan, R. S., Proult, I., & Clément, C. (2004). Plastid ultrastructure and DNA related to albinism in androgenetic embryos of various barley (Hordeum vulgare) cultivars. Plant Cell, Tissue and Organ Culture, 76, 35–43.CrossRefGoogle Scholar
  36. Chang, M., Huang, Y. W., Aronstam, R. S., & Lee, H. J. (2014). Cellular delivery of noncovalently-associated macromolecules by cell-penetrating peptides. Current Pharmaceutical Biotechnology, 15, 267–275.Google Scholar
  37. Chaturvedi, R., Razdan, M. K., & Bhojwani, S. S. (2003). Production of haploids of neem (Azadirachta indica A. Juss.) by anther culture. Plant Cell Reports, 21, 531–537.PubMedPubMedCentralGoogle Scholar
  38. Chauhan, H., & Khurana, P. (2011). Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnology Journal, 9, 408.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chauvin, J. E., Yang, Q., Le Jeune, B., & Herve, Y. (1993). Obtention d’embrions par culture d’antheres chez le chou-fleur et le brocoli et evaluation des potentialites du materiel obtenu pour la creation varietale. Agronomie, 13(7), 579–590.CrossRefGoogle Scholar
  40. Chen, J. L., & Beversdorf, W. D. (1994). A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L.). Theoretical and Applied Genetics, 88(2), 187–192.Google Scholar
  41. Chen, J. F., Cui, A., Malik, A., & Mbira, K. G. (2011). In vitro haploid and dihaploid production via unfertilized ovule culture. Plant Cell, Tissue and Organ Culture, 104, 311–319.CrossRefGoogle Scholar
  42. Chen, X. M., Wang, F. J., Li, S. M., & Zhang, W. X. (2013). Stable production of wheat haploid and doubled haploid by wheat X maize cross. Acta Agronomica Sinica, 39, 2247–2252.CrossRefGoogle Scholar
  43. Chen, X., Nilanthi, D., Yang, Y., & Wu, H. (2016). Anther culture and plant regeneration of tetraploid purple coneflower (Echinacea purpurea L.). Journal of Biosciences and Medicines, 4, 89–96.CrossRefGoogle Scholar
  44. Christianson, M. L., & Chiscon, M. O. (1978). Use of Haploid Plants as Bioassays for Mutagens. Environmental Health Perspectives, 27, 77–83.PubMedPubMedCentralGoogle Scholar
  45. Chu, C. C., Hill, R. D., & Brule-Babel, A. L. (1990). High frequency of pollen embryoid formation and plant regeneration in Triticum aestivum L. on monosaccharide containing media. Plant Science, 66, 255–262.CrossRefGoogle Scholar
  46. Chugh, A., Amundsen, E., & Eudes, F. (2009). Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Reports, 28(5), 801–810.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Chupeau, Y., Caboche, M., & Henry, Y. (Eds.). (1998). Androgenesis and haploid plants. Berlin: Springer.Google Scholar
  48. Chuong, P. V., Beyersdorf, W. D., Powell, A. D., & Pauls, K. P. (1988). Somatic transfer of cytoplasmic traits in Brassica napus L. by haploid protoplast fusion. MGG Molecular & General Genetics, 211(2), 197–201.Google Scholar
  49. Custers, J. B. M., Cordewener, J. H. G., Nollen, Y., Dons, J. J., & van Lookeren-Campagne, M. M. (1994). Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Reports, 13, 267–271.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Dahleen, L. S. (1999). Donor-plant environment effects on regeneration from barley embryo-derived callus. Crop Science, 39, 682–685.CrossRefGoogle Scholar
  51. Dal, B., Sari, N., & Solmaz, İ. (2016). Effect of different irradiation sources and doses on haploid embryo induction in Altinbas (Cucumis melo L. var. inodorus) melons. Turkish Journal of Agriculture and Forestry, 40, 552–559.CrossRefGoogle Scholar
  52. Delourme, R., Falentin, C., Fomeju, B., Boillot, M., Lassalle, G., André, I., Duarte, J., Gauthier, V., Lucante, N., Marty, A., Pauchon, M., Pichon, J.-P., Ribière, N., Trotoux, G., Blanchard, P., Rivière, N., Martinant, J.-P., & Pauquet, J. (2013). High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genomics, 14(1), 120Google Scholar
  53. Dimitrova, A. P., & Christov, A. M. (1992). Electrically induced protoplast fusion using pulse electric fields for dieelectrophoresis. Plant Physiology, 100, 2008–2012.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Doi, H., Takahashi, R., Hikage, T., & Takahat, Y. (2010). Embryogenesis and doubled haploid production from anther culture in gentian (Gentiana triflora). Plant Cell, Tissue and Organ Culture, 102(1), 27–33.CrossRefGoogle Scholar
  55. Doi, H., Yokoi, S., Hikage, T., Nishihara, M., Tsutsumi, K., & Takahata, Y. (2011). Gynogenesis in gentians (Gentiana triflora, G. scabra): Production of haploids and doubled haploids. Plant Cell Reports, 30, 1099–1106.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Doi, H., Hosh, N., Yamada, E., Yokoi, S., Nishihara, M., Hikage, T., & Takahata, Y. (2013). Efficient haploid and doubled haploid production from unfertilized ovule culture of gentians (Gentiana spp.). Breeding Science, 63, 400–406.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Dormann, M., Wang, H.M., Oelck, M. (2001) Transformed embryogenic microspores for the generation of fertile homozygous plants. USA Patent US 6,316,694 B1Google Scholar
  58. Driks, R., et al. (2009). Reverse breeding: A novel breeding approach based on engineered meiosis. Plant Biotechnology Journal, 7(9), 837–845.CrossRefGoogle Scholar
  59. Duke, J. A. (2001). Handbook of phytochemical constituents of GRAS herbs and other economic plants. New York: CRC Press.Google Scholar
  60. Dunwell, J. M. (1986). Pollen, ovule and embryo culture, as tools in plant breeding. In L. A. Withers & P. G. Alderson (Eds.), Plant tissue culture and its agricultural applications (pp. 375–404). London: Butterworths.CrossRefGoogle Scholar
  61. Dunwell, J. M. (2010). Haploids in flowering plants: Origins and exploitation. Plant Biotechnology Journal, 8, 377–424.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Eshaghi, Z. C., Abdollahi, M. R., Moosavi, S. S., Deljou, A., & Seguí-Simarro, J. M. (2015). Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell, Tissue and Organ Culture, 122, 321–329.CrossRefGoogle Scholar
  63. Eudes, F., Shim, Y. S., & Jiang, F. (2014). Engineering the haploid genome of microspores. Biocatalysis and Agricultural Biotechnology, 3, 20–23.CrossRefGoogle Scholar
  64. Fabijanski, S. F., Altosaar, I., & Arnison, P. G. (1991). Heat shock response during anther culture of broccoli (Brassica oleracea var italica). Plant Cell Tissue and Organ Culture, 26, 203–212.Google Scholar
  65. Fan, Z., Armstrong, K. C., & Keller, W. A. (1998). Development of microspores in vivo and in vitro in Brassica napus L. Protoplasma, 147, 191–199.CrossRefGoogle Scholar
  66. Ferrie, A. M. R. (2006). Doubled haploid production in nutraceutical species: A review. Euphytica, 158, 347–357.CrossRefGoogle Scholar
  67. Ferrie, A. M. R., & Caswell, K. L. (2011). Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell, Tissue and Organ Culture, 104, 301–309.CrossRefGoogle Scholar
  68. Ferrie, A. M. R., & Keller, W. A. (1995). Microspore culture for haploid plant production. In O. L. Gamborg & G. C. Phillips (Eds.), Plant cell, tissue and organ culture. Fundamental methods (pp. 155–164). Berlin: Springer.CrossRefGoogle Scholar
  69. Ferrie, A. M. R., Bethune, T., & Kernan, Z. (2005). An overview of preliminary studies on the development of doubled haploid protocols for nutraceutical species. Acta Physiologiae Plantarum, 27, 735–741.CrossRefGoogle Scholar
  70. Ferrie, M. R. A. (2013). Advances in microspore culture technology: A biotechnological tool for the improvement of medicinal plants. In Biotechnology for Medicinal Plants: Micropropagation and Improvement (pp. 191–206). Berlin/Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-29974-2_8.
  71. Flachsland, E., Mroginski, L., & Davina, J. (1996). Regeneration of plants from anthers of Stevia rebaudiana Bertoni (Compositae) cultivated in vitro. Biocell, 20, 87–90.Google Scholar
  72. Foroughi-Wehr, B., & Wenzel, G. (1993). Androgenesis and parthenogenesis. In W. D. Hayward, N. O. Bosemark, & I. Romagosa (Eds.), Plant breeding: Principles and prospects (pp. 261–277). London: Chapman and Hall.CrossRefGoogle Scholar
  73. Forster, B. P., & Thomas, W. T. (2005). Doubled haploids in genetics and plant breeding. Plant Breeding Reviews, 25, 57–88.Google Scholar
  74. Fukuoka, H., Ogawa, T., Matsuoka, M., Ohkawa, Y., & Yano, H. (1998). Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Reports, 17(5), 323–328.Google Scholar
  75. Geoffriaeu, E., Kahane, R., & Rancillac, M. (1997). Variation of gynogenesis ability in onion (Allium cepa L). Euphytica, 94, 37–44.CrossRefGoogle Scholar
  76. Germanà, M. A. (1997). Haploidy in Citrus. In S. M. Jain, S. K. Sopory, & R. E. Veilleux (Eds.), In vitro haploid production in higher plants (Vol. 5, pp. 195–217). Dordrecht: Kluwer.CrossRefGoogle Scholar
  77. Germanà, M. A. (2006). Doubled haploid production in fruit crops. Plant Cell Tissue Organ, 86, 131–146.CrossRefGoogle Scholar
  78. Germanà, M. A. (2007). Haploidy. In I. Khan (Ed.), Citrus. Genetics, breeding and biotechnology (pp. 167–196). Wallingford: CABI.CrossRefGoogle Scholar
  79. Germanà, M. A. (2009). Haploid and doubled haploids in fruit trees. In A. Touraev, B. Forster, & M. Jain (Eds.), Advances in haploid production in higher plants (pp. 241–263). Heidelberg: Springer.CrossRefGoogle Scholar
  80. Gilani, A. H., Shaheen, F., Saeed, S. A., Bibi, S., Irfanullah, S. M., & Faizi, S. (2000). Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine, 7(5), 423–426.PubMedCrossRefGoogle Scholar
  81. Gilania, A. H., Bashira, S., & Khan, A. (2007). Pharmacological basis for the use of Borago officinalis in gastrointestinal, respiratory and cardiovascular disorders. Journal of Ethnopharmacology, 114(3), 399.Google Scholar
  82. Gao, Z.-Y., Zhao, S.-C., He, W.-M., Guo, L.-B., Peng, Y.-L., Wang, J.-J., Guo, X.-S., Zhang, X.-M., Rao, Y.-C., Zhang, C., Dong, G.-J., Zheng, F.-Y., Lu, C.-X., Hu, J., Zhou, Q., Liu, H.-J., Wu, H.-Y., Xu, J., Ni, P.-X., Zeng, D.-L., Liu, D.-H., Tian, P., Gong, L.-H., Ye, C., Zhang, G.-H., Wang, J., Tian, F.-K., Xue, D.-W., Liao, Y., Zhu, L., Chen, M.-S., Li, J.-Y., Cheng, S.-H., Zhang, G.-Y., Wang, J., & Qian, Q. (2013). Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proceedings of the National Academy of Sciences, 110(35), 14492–14497.Google Scholar
  83. Grosser, J. W. (1994). In vitro culture of tropical fruits. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell tissue culture 20 (pp. 475–496). Dordrecht: Kluwer Academic Publishers.Google Scholar
  84. Guerche, P., Charbonnier, M., Jouanin, L., Tourneur, C., Paszkowski, J., & Pelletier, G. (1987). Direct gene transfer by electroporation in Brassica napus. Plant Science, 52(1–2), 111–116.Google Scholar
  85. Guha, S., & Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature, 204, 497.CrossRefGoogle Scholar
  86. Guha, S., & Maheshwari, S. C. (1966). Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature, 212, 97–98.CrossRefGoogle Scholar
  87. Gurel, S., Gurel, E., & Kaya, Z. (2000). Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Reports, 19, 1155–1159.CrossRefGoogle Scholar
  88. Gurushidze, M., Hensel, G., Hiekel, S., Schedel, S., Valkov, V., & Kumlehn, J. (2014). True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One, 9, 1–9.CrossRefGoogle Scholar
  89. Harbige, L. S., Layward, L., Downes, M. M., Dumonde, D. C., & Amor, S. (2000). The protective effects of omega-6 fatty acids in experimental autoimmune encephalomyelitis (EAE) in relation to transforming growth factor-beta 1 (TGF-1) upregulation and increased prostaglandin E2 (PGE2) production. Clinical and Experimental Immunology, 122(3), 445–452.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Harborne, J. B., & Williams, C. A. (2004). Phytochemistry of the genus Echinacea. In S. Miller (Ed.), Echinacea. The genus Echinacea (pp. 55–71). Boca Raton: CRC Press.CrossRefGoogle Scholar
  91. Harvey, A. L. (2008). Natural products in drug discovery. Drug Discovery Today, 13, 894–901.PubMedCrossRefPubMedCentralGoogle Scholar
  92. He, M., Nichterlein, K., van Zanten, L., & Ahloowalia, B. S. (2000). Officially released mutant varieties – The FAO/IAEA database. Mutation Breed Review, 12, 1–84.Google Scholar
  93. Henikoff, S., & Dalal, Y. (2005). Centromeric Chromatin: What makes it unique? Current Opinion in Genetics and Development, 15(2), 177–184.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Hobbs, C. R. (1998). The Echinacea handbook. Capitola: Botanica.Google Scholar
  95. Hofinger, B. J., Ankele, E., Gülly, C., Heberle-Bors, E., & Pfosser, M. F. (2000). The involvement of the plastid genome in albino plant regeneration from microspores in wheat. In B. Bohanec (Ed.), Biotechnological approaches for utilization of gametic cells-COST 824 (pp. 215–228). Luxembourg: OP-EUR.Google Scholar
  96. Horner, M., & Pratt, M. L. (1979). Amino acid analysis of in vivo and androgenic anthers of Nicotiana tabacum. Protoplasma, 98(3), 279–282.CrossRefGoogle Scholar
  97. Horner, M., & Street, H. E. (1978). Problems encountered in the culture of isolated pollen of a Burley cultivar of Nicotiana tabacum. Journal of Experimental Botany, 29(108), 217–226.CrossRefGoogle Scholar
  98. Horrobin, D. F., Stewart, C., Carmichael, H., & Jamal, G. C. (1993). Use of gamma-linolenic acid and related compounds for the manufacture of a medicament for the treatment of complications of diabetes mellitus. European Patent 0,218,460.Google Scholar
  99. Hosp, J., et al. (2007). Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores. Plant Molecular Biology, 63, 137–149.PubMedCrossRefGoogle Scholar
  100. Hoveida, Z. S., et al. (2017). Production of doubled haploid plants from anther cultures of borage (Borago officinalis L.) by the application of chemical and physical stress. Plant Cell, Tissue and Organ Culture, 130(2), 369–378.CrossRefGoogle Scholar
  101. Hu, H., & Yang, H. Y. (Eds.). (1986). Haploids in higher plants in vitro. Beijing/Berlin: China Academic Publishers/Springer.Google Scholar
  102. Huang, B. (1992). Genetic manipulation of microspores and microspore-derived embryos. Vitro Cellular & Developmental Biology – Plant, 28(2), 53–58.Google Scholar
  103. Immonen, S., & Anttila, H. (1998). Impact of microspore developmental stage on induction and plant regeneration in rye anther culture. Plant Science, 139(2), 213–222.CrossRefGoogle Scholar
  104. Indrianto, A., Heberle-Bors, E., & Tourae, A. (1999). Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Science, 143(1), 71–79.CrossRefGoogle Scholar
  105. Irikova, T., Grozeva, S., & Rodeva, V. (2011). Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiologiae Plantarum, 33, 1559–1570.CrossRefGoogle Scholar
  106. Jain, S. M., Sopory, S. K., & Veilleux, R. E. (Eds.). (1996–1997). In vitro haploid production in higher plants (Vol. 1–5). Dordrecht: Kluwer.Google Scholar
  107. Jin, W., Melo, J. R., Nagaki, K., Talbert, P. B., Henikoff, S., Dawe, R. K., & Jiang, J. (2004). Maize centromeres: Organization and functional adaptation in the genetic background of oat. The Plant Cell, 16, 571–581.Google Scholar
  108. Jardinaud, M.-F., Souvré, A., & Alibert, G. (1993). Transient GUS gene expression in Brassica napus electroporated microspores. Plant Science, 93(1–2), 177–184.Google Scholar
  109. Javornik, B., Bohanec, B., & Campion, B. (1998). Second cycle gynogenesis in onion, Allium cepa L, and genetic analysis of the plants. Plant Breeding, 117(3), 275–278.CrossRefGoogle Scholar
  110. Jogdand, S. N. (2001). Protoplast technology, gene biotechnology (3rd ed.pp. 171–186). New Delhi: Himalaya Publishing House.Google Scholar
  111. Joosen, R., et al. (2007). Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiology, 144, 155–172.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Jones-Villeneuve, E., Huang, B., Prudhomme, I., Bird, S., Kemble, R., Hattori, J., & Miki, B. (1995). Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell, Tissue and Organ Culture, 40(1), 97–100.Google Scholar
  113. Jumin, H. B., & Nito, N. (1996). Plant regeneration via somatic embryogenesis from protoplasts of six plant species related to citrus. Plant Cell Reports, 15, 332–336.PubMedCrossRefGoogle Scholar
  114. Kasha, K. J. (1974). Haploids from somatic cells. In K. J. Kasha (Ed.), Haploids in higher plants: Advances and potential (pp. 67–87). Ontario: University of Guelph.Google Scholar
  115. Kasha, K. J., & Kao, K. N. (1970). High frequency haploid production in barley (Hordeum vulgare L.). Nature, 225, 874–876.PubMedCrossRefGoogle Scholar
  116. Kasha, K. J., Simion, E., Oro, R., & Shim, Y. S. (2003). Barley isolated microspore culture protocol. In M. Maluszynski, K. J. Kasha, B. P. Forster, & I. Szarejko (Eds.), Doubled haploid production in crop plants. Dordrecht: Springer.CrossRefGoogle Scholar
  117. Kast, R. E. (2001). Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha. International Immuno Pharmacology, 1(12), 2197–2199.CrossRefGoogle Scholar
  118. Kelliher, T., et al. (2016). Maternal haploids are preferentially induced by CENH3- tail swap transgenic complementation in maize. Frontiers in Plant Science, 7, 414.  https://doi.org/10.3389/fpls.2016.00414.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Kernan, Z., & Ferrie, A. M. R. (2006). Microspore embryogenesis and the development of a double haploidy protocol for cow cockle (Saponaria vaccaria). Plant Cell Reports, 25, 274–280.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Kiełkowska, A., & Adamus, A. (2010). In vitro culture of unfertilized ovules in carrot (Daucus carota L.). Plant Cell, Tissue and Organ Culture, 102, 309–319.CrossRefGoogle Scholar
  121. Kiełkowska, A., Adamus, A., & Baranski, R. (2014). An improved protocol for carrot haploid and doubled haploid plant production using induced parthenogenesis and ovule excision in vitro. In Vitro Cellular & Developmental Biology – Plant, 50, 376–383.Google Scholar
  122. King, R. M., & Robinson, H. (1987). The genera of the Eupatoriae (Asteraceae) (pp. 1–180). Saint Louis: Missouri Botanical Garden Library.Google Scholar
  123. Kinghorn, A. D., & Soejarto, D. D. (1985). Current status of stevioside as a sweetening agent for human use. In H. Wagner, H. Hikino, & N. R. Farnsworth (Eds.), Economic and medicinal plant research (Vol. 1, pp. 1–52). London: Academic.Google Scholar
  124. Kiszczak, W., Kowalska, U., Kapuścińska, A., Burian, M., & Górecka, K. (2017). Comparison of methods for obtaining doubled haploids of carrot. Acta Societatis Botanicorum Poloniae, 86(2), 3547.CrossRefGoogle Scholar
  125. Kowalska, U., Rybaczek, D., Krzyżanowska, D., Kiszczak, W., & Górecka, K. (2008). Cytological assessment of carrot plants obtained in anther culture. Acta Biologica Cracoviensia Series Botanica, 50(2), 7–11.Google Scholar
  126. Kumar, G. H., Chandra Mohan, K. V. P., Rao, A. J., & Nagini, S. (2009). Investigational Nimbolide a limonoid from Azadirachta indica inhibits proliferation and induces apoptosis of human choriocarcinoma (BeWo) cells. Investigational New Drugs, 27(3), 246–252.CrossRefGoogle Scholar
  127. Kurtar, E. S., Sarı, N., & Abak, K. (2002). Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica, 127, 335.CrossRefGoogle Scholar
  128. Kyo, M., Hattori, S., Yamaji, N., Pechan, P., & Fukui, H. (2003). Cloning and characterization of cDNAs associated with the embryogenic dedifferentiation of tobacco immature pollen grains. Plant Science, 164, 1057–1066.CrossRefGoogle Scholar
  129. Lantos, C., et al. (2009). Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via coculture with ovary of pepper or wheat. Plant Cell, Tissue and Organ Culture, 97, 285–293.CrossRefGoogle Scholar
  130. Leach, C. R., Mayo, O., & Burger, R. (1990). Quantitatively determined self-incompatibility Outcrossing in Borago officinalis. Theoretical and Applied Genetics, 79, 427–430.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Li, T. C. S. (1998). Echinacea: Cultivation and medicinal value. Hort Technology, 8, 122–129.Google Scholar
  132. Li, J. R., Zhuang, F. Y., Ou, C. G., Hu, H., Zhao, Z. W., & Mao, J. H. (2013). Microspore embryogenesis and production of haploid and doubled haploid plants in carrot (Daucus carota L.). Plant Cell, Tissue and Organ Culture, 112, 275–287.CrossRefGoogle Scholar
  133. Lian, L. H., et al. (2010). Anti-apoptotic activity of gentiopicroside in D galactosamine/lipopolysaccharide-induced murine fulminant hepatic failure. Chemico-Biological Interactions, 188, 127–133.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Liu, W. (2009, October). Production of doubled haploid transgenic Wheat (Triticum aestivum L.): Transformation of microspores and regeneration of homozygous transformants. Saarbrücken: VDM Verlag.Google Scholar
  135. Liu, G. S., Li, Y., Liu, F., & Cao, M. Q. (1995). The influence of high temperature on the cultures of isolated microspores of Chinese cabbage. Acta Botanica Sinica, 37, 140–146.Google Scholar
  136. Liu, W., Zheng, Y., Polle, E., & Konzak, C. F. (2002). Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci, 42, 686−692.Google Scholar
  137. Lux, H., Herrmann, L., & Wetzel, C. (1990). Production of haploid sugar-beet (Beta vulgaris L.) by culturing unpollinated ovules. Plant Breeding, 104, 177–183.CrossRefGoogle Scholar
  138. Magoon, M. L., & Khanna, K. R. (1963). Haploids. Caryologia, 16, 191–235.CrossRefGoogle Scholar
  139. Malik, M. R., Wang, F., Dirpaul, J. M., Zhou, N., Polowick, P. L., Ferrie, A. M. R., & Krochko, J. E. (2007). Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiology, 144, 134–154.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Maluszynski, M., Kasha, K. J., Forster, B. P., & Szarejko, I. (Eds.). (2003a). Doubled haploid production in crop plants: A manual. Dordrecht: Kluwer.Google Scholar
  141. Maluszynski, M., Kasha, K. J., & Szarejko, I. (2003b). Published double haploid protocols in plant species (M. Maluszynski, K. J. Kasha, Eds., pp. 397–403). Dordrecht: Kluwer Academic Publishers.Google Scholar
  142. Manaharana, T., Tenga, L. L., Appletonb, D., Minga, C. H., Masilamanic, T., & Palanisamyd, U. D. (2011). Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts. Food Chemistry, 129, 1355–1361.CrossRefGoogle Scholar
  143. Maraschin, S. F., de Priester, W., Spaink, H. P., & Wang, M. (2005). Androgenic switch: An example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 56, 1711–1726.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Maraschin, S. F., Caspers, M., Potokina, E., Wülfert, F., Graner, A., Spaink, H. P., & Wang, M. (2006). cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiologia Plantarum, 127, 535–550.CrossRefGoogle Scholar
  145. Martinez, L. E., Aguero, C. B., Lopez, M. E., & Galmarini, C. R. (2000). Improvement of in vitro gynogenesis induction in onion (Allium cepa L.) using polyamines. Plant Science, 156, 221–226.  https://doi.org/10.1016/S0168-9452(00)00263-6.CrossRefPubMedPubMedCentralGoogle Scholar
  146. Matsubara, S., Dohya, N., Murakami, K., Nishio, T., & Dore, C. (1995). Callus formation and regeneration of adventitious embryos from carrot, fennel and mitsuba microspores by anther and isolated microspore cultures. Acta Horticulturae, 392, 129–137.CrossRefGoogle Scholar
  147. Melchers, G. (1978). Potatoes for combined somatic and sexual breeding methods; plants from protoplasts and fusion of protoplasts of potato and tomato. In A. W. Alfermann & E. Reinhard (Eds.), Production of natural compounds by cell culture methods: Proceedings of an International Symposium, on plant cell culture (pp. 306–311). Mfinchen: Ges. f. Strahlen- und Umweltforschung.Google Scholar
  148. Metwally, E. I., Moustafa, S. A., Sawy, B. I. E. L., Haroun, S. A., & Shalaby, T. A. (1998). Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo. Plant Cell, Tissue and Organ Culture, 52, 117–121.CrossRefGoogle Scholar
  149. Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828–9832Google Scholar
  150. Musial, K., Bohanec, B., Jakše, M., & Przywara, L. (2005). The development of onion (Allium cepa L.) Embryo sacs in vitro and gynogenesis induction in relation to flower size. In Vitro Cellular & Developmental Biology – Plant, 41(4), 446–452.Google Scholar
  151. Murch, S. J., Peiris, S. E., Shi, W. L., Zobayed, S. M. A., & Saxena, P. K. (2006). Genetic diversity in seed populations of Echinacea purpurea controls the capacity for regeneration, route of morphogenesis and phytochemical composition. Plant Cell Reports, 25, 522–532.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Narayanswamy, S. (1994). Plant cells and tissue cultures. Plant protoplast: Isolation, culture and fusion (pp. 391–469). New Delhi: TATA MC Graw Hill Publishing Company.Google Scholar
  153. Nat, J. V., Sluis, W. G., & Labadie, R. P. (1982). Gentiogenal, a new antimicrobial iridoid derived from gentiopicrin (gentiopicroside). Planta Medica, 45, 161–162.  https://doi.org/10.1055/s-2007-971351.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Nathana, V. K., Antonisamyb, J. M., Gnanarajc, N. E. W., & Subramaniana, K. M. (2012). Phytochemical and bio-efficacy studies on methanolic flower extracts of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pacific Journal of Tropical Biomedicine, 2, 641–645.CrossRefGoogle Scholar
  155. Nehlin, L., Möllers, C., Bergman, P., & Glimelius, K. (2000). Transient Î2-gus and gfp Gene Expression and Viability Analysis of Microprojectile Bombarded Microspores of Brassica napus L. Journal of Plant Physiology, 156(2), 175–183.Google Scholar
  156. Neuhaus, G., Spangenberg, G., Mittelsten Scheid, O., & Schweiger, H.-G. (1987). Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theoretical And Applied Genetics, 75(1).Google Scholar
  157. Nitsch, C. (1974). La culture de pollen isolé sur milieu synthétique. C R Acad Sci (Paris), 278, 1031–1034.Google Scholar
  158. Nitsch, C., & Norreel, B. (1973). Effet d'un choc thermique sur le pouvoir embryogène du pollen de Datura innoxia cultivé dans l’anthère ou isolé de l’anthère. C R Acad Sci (Paris), 276, 303–306.Google Scholar
  159. Otani, M., Wakita, Y., & Shimada, T. (2005). Doubled haploid plant production of transgenic rice (Oryza sativa L.) using anther culture. Plant Biotechnology, 22(2), 141–143.CrossRefGoogle Scholar
  160. Owen, H. R., & Raymond Miller, A. (1996). Haploid plant regeneration from anther cultures of three north american cultivars of strawberry (Fragaria x ananassa Duch.). Plant Cell Reports, 15(12), 905–909.Google Scholar
  161. Ozkum, D., & Tipirdamaz, R. (2002). The effects of cold treatment and charcoal on the in vitro androgenesis of pepper (Capsicum annuum L.). Turkish Journal of Botany, 26, 131–139.Google Scholar
  162. Palmer, C. E., Keller, W. A., & Kasha, K. J. (Eds.). (2005). Haploids in crop improvement II (Vol. 56). Heidelberg: Springer.Google Scholar
  163. Parra-Vega, V., Renau-Morata, B., Sifres, A., & Seguí-Simarro, J. M. (2013). Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell, Tissue and Organ Culture, 112, 353–360.CrossRefGoogle Scholar
  164. Pasha, C., Kuhad, R. C., & Rao, C. V. (2007). Strain improvement of thermotolerant Saccharomyces cerevessie VS3 strain for better utilization of lignocellulosic substrates. Journal of Applied Microbiology, 103, 1480–1489.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Pathirana, R., Frew, T., Hedderley, D., Timmerman-Vaughan, G., & Morgan, E. R. (2011). Haploid and doubled haploid plants from developing male and female gametes of Gentiana triflora. Plant Cell Reports, 30, 1055–1065.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Pechan, P. M., & Keller, W. A. (1988). Identification of potentially embryogenic microspores in Brassica napus. Physiologia Plantarum, 74(2), 377–384.CrossRefGoogle Scholar
  167. Pechan, P. M. (1989). Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Reports, 8(7), 387–390.Google Scholar
  168. Phippen, C. I., & Ockendon, D. J. (1990). Genotype, plant, bud size and factors affecting anther culture of cauliflower (Brassica oleracea var. botrytis). Theoretical and Applied Genetics, 79, 33–38.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Piosik, Ł., Zenkteler, E., & Zenkteler, M. (2016). Development of haploid embryos and plants of Lactuca sativa induced by distant pollination with Helianthus annuus and H. tuberosus. Euphytica, 208, 439–451.CrossRefGoogle Scholar
  170. Pons, T. L. (1992). Seed responses to light. In M. Fenner (Ed.), Seeds: The ecology of regeneration in plants (pp. 259–284). Wallingford: CAB International.Google Scholar
  171. Rao, P. V. L., & De, D. N. (1987). Haploid plants from in vitro anther culture of the leguminous tree, Peltophorum pterocarpum (DC) K. Hayne (Copper pod). Plant Cell, Tissue and Organ Culture, 11, 167–177.CrossRefGoogle Scholar
  172. Raquin, C. (1983). Utilization of different sugars as carbon sources for in vitro cultures of Petunia. Z Pflanzenphysol, 111, 453–457.CrossRefGoogle Scholar
  173. Ravi, M., & Chan, S. W. L. (2010). Haploid plants produced by centromere-mediated genome elimination. Nature, 464, 615–618.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Ravi, M., et al. (2014). A powerful haploid tool for plant genetics. Nature Methods, 12, 15.Google Scholar
  175. Reiss, E., Schubert, J., Scholze, P., Krämer, R., & Sonntag, K. (2009). The barley thaumatin-like protein Hv-TLP8 enhances resistance of oilseed rape plants to. Plant Breeding, 128(2), 210–212.Google Scholar
  176. Reynolds, T. L. (1997). Pollen embryogenesis. Plant Molecular Biology, 33, 1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  177. Rossi, P. G., Bao, L., et al. (2007). (E)-Methylisoeugenol and elemicin: Antibacterial components of Daucus carota L. Essential oil against Campylobacter jejuni Rossi. Journal of Agricultural and Food Chemistry, 55(18), 7332–7336.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Rudolf, K., Bohanec, B., & Hansen, M. (1999). Microspore culture of white cabbage, Brassica oleracea var. capitata L.: Genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breeding, 118, 237–241.CrossRefGoogle Scholar
  179. Sanei, M., Pickering, R., Kumke, K., Nasuda, S., & Houben, A. (2011). Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proceedings of the National Academy of Sciences of the United States of America, 108, 498–505.CrossRefGoogle Scholar
  180. Sannemann, W., Huang, B. E., Mathew, B., & Léon, J. (2015). Multi-parent advanced generation inter-cross in barley: High-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding, 35(3)Google Scholar
  181. Sauton, A. (1989). Haploid gynogenesis in Cucumis sativus induced by irradiated pollen. Cucurbit Genetics Cooperative Report, 12, 22–23.Google Scholar
  182. Seguí-Simarro, J. M. (2010). Androgenesis revisited. The Botanical Review, 76, 377–404.CrossRefGoogle Scholar
  183. Seguí-Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: Changes associated with embryogenesis induction and microspore derived embryogenesis. Physiologia Plantarum, 134, 1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Sejdler, L. K., & Dabrowska, J. (1996). Studies on the biology of flowering and fruiting of purple coneflower (Echinacea purpurea Moench). Pt. 1. Biology of flowering and fruiting. Herba Polonica, 42, 83–87.Google Scholar
  185. Shariatpanahi, M. E., Bal, U., Heberle-Bors, E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127, 519–534.CrossRefGoogle Scholar
  186. Sharma, K. D., Karki, S., Thakur, N. S., & Attri, U. (2012). Chemical composition, functional properties and processing of carrot—a review. Journal of Food Science and Technology, 49(1), 22–32.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Sibi, M. L., Kobaissi, A., & Shekafandeh, A. (2001). Green haploid plants from unpollinated ovary culture in tetraploid wheat (Triticum durum Defs.). Euphytica, 122, 351–359.CrossRefGoogle Scholar
  188. Simon, P. W., Freeman, R. E., Vieira, J. V., Boiteux, L. S., Briard, M., Nothnagel, T., Michalik, B., & Kwon, Y. (2008). Carrot. In J. Prohens & F. Nuez (Eds.), Handbook of plant breeding (Vol. 2, pp. 327–357). New York: Springer.Google Scholar
  189. Sluis, W. G., & Labadie, R. P. (1981). Fungitoxic activity of the secoiridoid glucoside gentiopicrin (gentiopicroside). Planta Medica, 42, 139–140.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Smykal, P. (2000). Pollen embryogenesis – The stress mediated switch from gametophytic to sporophytic development. Current status and future prospects. Biologia Plantarum, 43, 481–489.CrossRefGoogle Scholar
  191. Srinivas, R., & Panda, T. (1997). Localization of carboxymethyl cellulase in the intergeneric fusants of Trichodermma reesei QM 9414 and Saccharomyces cerevisee NCIM 3288. Bioprocess and Biosystems Engineering, 18, 71–73.Google Scholar
  192. Staniaszek, M., & Habdas, H. (2006). RAPD technique application for intraline evaluation of androgenic carrot plants. Folia Hortic, 18, 87–97.Google Scholar
  193. Sukumaran, S., et al. (2011). Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pacific Journal of Tropical Medicine, 735–738.Google Scholar
  194. Sun, T., Simon, P. W., & Tanumihardjo, S. A. (2009). Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. Journal of Agricultural and Food Chemistry, 57(10), 4142–4147.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Swanson, E. B., & Erickson, L. R. (1989). Haploid transformation in Brassica napus using an octopine-producing strain of Agrobacterium tumefaciens. Theoretical and Applied Genetics, 78(6), 831–835.Google Scholar
  196. Szarejko, I., & Forster, B. P. (2007). Doubled haploidy and induced mutation. Euphytica, 158(3), 359–370.CrossRefGoogle Scholar
  197. Takahata, Y., & Keller, W. A. (1991). High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci., 74, 235–242.Google Scholar
  198. Tavares, A. C., Gonçalves, M. J., Cavaleiro, C., Cruz, M. T., Lopes, M. C., Canhoto, J., & Salgueiro, L. R. (2008). Essential oil of Daucus carota subsp. halophilus: Composition, antifungal activity and cytotoxicity. Journal of Ethnopharmacology, 119(1, 29–134.Google Scholar
  199. Telmer, C. A., Newcomb, W., & Simmonds, D. H. (1995). Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napus cv. Topas. Protoplasma, 185, 106.CrossRefGoogle Scholar
  200. Tipirdamaz, R., & Ellialtioğlu, S. (1998). The effects of cold treatments and activated charcoal on ABA contents of anthers and in vitro androgenesis in eggplant (Solanum melongena L.). In I. Tsekos & M. Moustakas (Eds.), Progress in botanical research, Proceedings of the 1st Balkan botanical congress. Dordrecht: Kluwer Academic Publishers.Google Scholar
  201. Tomiczak, K., Sliwinska, E., & Rybczyński, J. J. (2017). Protoplast fusion in the genus Gentiana: Genomic composition and genetic stability of somatic hybrids between Gentiana kurroo Royle and G. cruciata L. Plant Cell, Tissue and Organ Culture, 131, 1–14.  https://doi.org/10.1007/s11240-017-1256-x.CrossRefGoogle Scholar
  202. Tosca, A., Arcara, L., & Frangi, P. (1999, October). Effect of genotype and season on gynogenesis efficiency in Gerbera. Plant Cell, Tissue and Organ Culture, 59, 77.CrossRefGoogle Scholar
  203. Touraev, A., Ilham, A., Vicente, O., & Heberle-Bors, E. (1996a). Stress as the major signal controlling the developmental of tobacco microspores: Towards a unified model of induction of microspore/pollen embriogenesis. Planta, 200, 144–152.CrossRefGoogle Scholar
  204. Touraev, A., Indrianto, A., Wratschko, I., Ilham, A., Vicente, O., & Heberle-Bors, E. (1996b). Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sexual Plant Reproduction, 9, 209–215.CrossRefGoogle Scholar
  205. Touraev, A., Ilham, A., Vicente, O., & Heberle-Bors, E. (1996c). Stress-induced microspore embryogenesis in tobacco: An optimized system for molecular studies. Plant Cell Reports, 15, 561–565.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Touraev, A., Pfosser, M., & Heberle-Bors, E. (2001). The microspore: A haploid multipurpose cell. Advances in Botanical Research, 35, 53–109.CrossRefGoogle Scholar
  207. Touraev, A., Forster, B. P., & Jain, S. M. (Eds.). (2009). Advances in haploid production in higher plants. Berlin: Springer.Google Scholar
  208. Tsuwamoto, R., Fukuoka, H., & Takahata, Y. (2007). Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta, 225, 641–652.PubMedCrossRefGoogle Scholar
  209. Tu, Y., Sun, J., Liu, Y., Ge, X., Zhao, Z., Yao, X., & Zaiyun, L. (2008). Production and characterization of intertribal somatic hybrids of Raphanus sativus and Brassica rapa with dye and medicinal plant Isatis indigotica. Plant Cell Reports, 27(5), 873–883.PubMedCrossRefGoogle Scholar
  210. Tuvesson, S., Dayteg, C., Hagberg, P., Manninen, O., Tanhuanpää, P., Tenhola-Roininen, T., Kiviharju, E., Weyen, J., Förster, J., Schondelmaier, J., Lafferty, J., Marn, M., & Fleck, A. (2007). Molecular markers and doubled haploids in European plant breeding programmes. Euphytica, 158(3), 305–312Google Scholar
  211. Tyukavin, G. B., Shmykova, N. A., & Monakhova, M. A. (1999). Cytological study of embryogenesis in cultured carrot anthers. Russian Journal of Plant Physiology, 46(6), 767–773.Google Scholar
  212. Ushijima, S., Nakadai, T., & Uchida, K. (1991). Interspecific electrofusion of protoplasts between Aspergillus oryzae and Aspergillus sojae. Agricultural and Biological Chemistry, 55, 129–136.Google Scholar
  213. Vagera, J., & Havranek, P. (1985). In vitro induction of androgenesis in Capsicum annuum L. and its genetic aspects. Biologia Plantarum, 27(1), 10–21.CrossRefGoogle Scholar
  214. Vaidya, H., Rajani, M., Sudarsanam, V., Padh, H., & Goyal, R. (2009). Antihyperlipidaemic activity of swertiamarin, a secoiridoid glycoside in poloxamer-407-induced hyperlipidaemic rats. Journal of Natural Medicines, 63, 437–442.PubMedCrossRefPubMedCentralGoogle Scholar
  215. Weich, W. E., & Levall, M. W. (2003). Doubled haploid production of sugar beet (Beta vulgaris L.). In M. Maluszynski, K. J. Kasha, B. P. Forster, & I. Szarejko (Eds.), Doubled haploid production in crop plants: A manual (pp. 265–273). Dordrecht: Kluwer Academic Publishers.Google Scholar
  216. Wettasinghe, M., & Shahidi, F. (1999). Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago officinalis L.) seeds. Food Chemistry, 67, 399–414.CrossRefGoogle Scholar
  217. Wolyn, D. J., & Nichols, B. (2003). Asparagus microspore and anther culture. In M. Maluszynski, K. J. Kasha, B. P. Forster, & I. Szarejko (Eds.), Doubled haploid production in crop plants: A manual (pp. 265–273). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  218. Xu, L., Najeeb, U., Tang, G. X., Gu, H. H., Zhang, G. Q., He, Y., & Zhou, W. J. (2007). Haploid and doubled haploid technology. Advances in Botanical Research, 45, 181–216.CrossRefGoogle Scholar
  219. Yadav, J. S., Nanda, S. P., Reddy, P. T., & Rao, A. B. (2002). Efficient enantioselective reduction of ketones with Daucus carota root. The Journal of Organic Chemistry, 67(11), 3900–3903.PubMedCrossRefGoogle Scholar
  220. Yamada, H., Kikuchi, S., Inui, T., Takahashi, H., & Kimura, K. (2014). Gentiolactone, a secoiridoid dilactone from Gentiana triflora, inhibits TNF-a, iNOS and Cox-2 mRNA expression and blocks NF-kB promoter activity in murine macrophages. PLoS One, 9(11), 113834.CrossRefGoogle Scholar
  221. Zhang, Y. X., Lespinasse, Y., & Chevreau, E. (1990). Induction of haploidy in fruit trees. Acta Horticulturae, (280), 293–304.Google Scholar
  222. Zhang, Z. L., Qiu, F. Z., Liu, Y. Z., Ma, K. J., Li, Z. Y., & Xu, S. Z. (2008). Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Reports, 27, 1851–1860.PubMedCrossRefGoogle Scholar
  223. Zhao, F. C., Nilanthi, D., Yang, Y. S., & Wu, H. (2006). Anther culture and haploid plant regeneration in purple coneflower (Echinacea purpurea L.). Plant Cell, Tissue and Organ Culture, 86, 55–62.CrossRefGoogle Scholar
  224. Zubko, M. K., & Day, A. (2002). Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome-deficient plastids in stable phenocopies of cereal albino mutants. Molecular Genetics and Genomics, 267, 27–37.PubMedCrossRefGoogle Scholar
  225. Zur, I., Dubas, E., Golemiec, E., Szechynska-Hebda, M., Golebiowska, G., & Wedzony, M. (2009). Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (Tritico secale Wittm.). Plant Cell Reports, 28, 1279–1287.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sweta Sharma
    • 1
  • Kshitij Vasant Satardekar
    • 1
  • Siddhivinayak S. Barve
    • 1
  1. 1.KET’s Scientific Research Centre, Mulund(East)MumbaiIndia

Personalised recommendations