Advertisement

Somaclonal Variations and Their Applications in Medicinal Plant Improvement

  • Frédéric Ngezahayo
Chapter

Abstract

Plant tissue culture is an important tool for various investigations in many plants including medicinal plants. Different techniques are used to in vitro cultivate medicinal plants for mass propagation, conservation, and secondary metabolites production. They include micropropagation, axillary bud, shoot culture, root, and callus culture, organogenesis, somatic embryogenesis, and cell suspension culture. For the production of phytochemicals, cell suspension and callus cultures are most preferred followed by root and shoot cultures and somatic embryogenesis. However, plant tissue culture may generate somaclonal variations as a result of gene mutation and/or changes in epigenetic marks, particularly with highly differentiated explants and callus stage passage. On one hand, the occurrence of somaclonal variation may be an obstacle for both in vitro propagation and germplasm conservation, while it is exploited in many crop plant improvements on the other hand. In the present chapter, possible somaclonal variation following medicinal plant tissue culture and their consequent implication in the regulatory network of secondary metabolites production are presented.

Keywords

Medicinal plant Tissue culture Somaclonal variation Secondary metabolites 

References

  1. Abyari, M., Nasr, N., Soorni, J., & Sadhu, D. (2016). Enhanced accumulation of Scopoletin in cell suspension culture of Spilanthes acmella Murr. Using precursor feeding. Biological and Applied Sciences, 59, 1–7.Google Scholar
  2. Ahmed, S. A., & Baig, M. M. V. (2014). Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi Journal of Biological Sciences, 21, 499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alatzas, A., & Foundouli, A. (2006). Distribution of ubiquitinated histone H2A during plant cell differentiation in maize root and dedifferentiation in callus culture. Plant Science, 171, 481–487.PubMedCrossRefGoogle Scholar
  4. Al-Sane, K. O., Shibli, R. A., Freihat, N. M., & Hammouri, M. K. (2005). Cell suspension culture and secondary metabolites production in African violet (Saintpaulia ionantha Wendl.). Jordan Journal of Agricultural Sciences, 1(1), 84–92.Google Scholar
  5. Amini, S.-A., Shabani, L., Afghani, L., Jalpour, Z., & Sharifi-Tehrani, M. (2014). Squalestatin-induced production of taxol and baccatin in cell suspension culture of yew (Taxus baccata L.). Turkish Journal of Biology, 38, 528–536.CrossRefGoogle Scholar
  6. Arya, D., Patni, V., & Kant, U. (2007). In vitro propagation and quercetin quantification in callus cultures of Rasna (Puchea lanceolata Oliver & Hiern.). Indian Journal of Biotechnology, 7, 383–387.Google Scholar
  7. Ataei-Azimi, A., Hashemloian, B. D., Ebrahimzadeh, H., & Majd, A. (2008). High in vitro production of ant-canceric indole alkaloids from periwinkle (Catharanthus roseus) tissue culture. African Journal of Biotechnology, 7(16), 2834–2839.Google Scholar
  8. Bansal, Y. K., & Bharati, A. J. (2014). In vitro production of flavonoids: A review. World Journal of Pharmaceutical Sciences, 3(6), 508–533.Google Scholar
  9. Berdasco, M., Alcazar, R., Garcıa-Ortiz, M. V., et al. (2008). Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One, 3, e3306.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Besher, S., Al-Ammouri, Y., & Murshed, R. (2014). Production of tropan alkaloids in the in vitro and callus cultures of Hyoscyamus aureus and their genetic stability assessment using ISSR markers. Physiology and Molecular Biology of Plants, 20(3), 343–349.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bharti, P., Mahajan, M., Vishwakarma, A. K., Bhardwaj, J., & Yadav, S. K. (2015). AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. Journal of Experimental Botany, 66(19), 5959–5969.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bhattacharyya, P., Kumaria, S., Diengdoh, R., & Tandon, P. (2014). Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene, 2, 489–504.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Borpuzari, P. P., & Borthakur, M. (2016). Effect of plant growth regulators and explants sources on somatic embryogenesis of matured tissue of the anticancerous medicinal plant Plumbago rosea. Journal of Medicinal Plants Studies, 4(5), 165–170.Google Scholar
  14. Chakradhar, T., & Pullaiah, T. (2014). In vitro regeneration through adventitious buds in Wattakaka volubilis, a rare medicinal plant. African Journal of Biotechnology, 13(1), 55–60.CrossRefGoogle Scholar
  15. Chandrasekhar, T., Hussain, T. M., Gopal, G. R., & Rao, J. V. S. (2006). Somatic embryogenesis of Tylophora indica (Burm.f.) Merril., an important medicinal plant. International Journal of Applied Science and Engineering, 4(1), 33–40.Google Scholar
  16. Chávez-Hernández, E. C., Alejandri-Ramírez, N. D., Juárez-González, V. T., & Dinkova, T. D. (2015). Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis. Frontiers in Plant Science, 6, 555.  https://doi.org/10.3389/fpls.2015.00555.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chawla, H. S. (2002). Introduction to plant biotechnology. Enfield: Science Publishers.Google Scholar
  18. Chen, C.-C., Chang, H.-C., Kuo, C.-L., Agrawal, D. C., Wu, C.-R., & Tsay, H.-S. (2014). In vitro propagation and analysis of secondary metabolites in Glossogyne tenuifolia (Hsiang-Ju) – a medicinal plant native to Taiwan. Botanical Studies, 55(45), 1–9.Google Scholar
  19. Chen-Guang, Z., Jing-Li, Y., Li-Kun, L., Cheng-Nan, L., De-An, X., & Cheng-Hao, L. (2011). Research progress in somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus maxim.). Journal of Medicinal Plant Research, 5(33), 7140–7145.Google Scholar
  20. Chu, Z., Chen, J., Xu, H., Dong, Z., Chen, F., & Cui, D. (2016). Identification and comparative analysis of microRNA in wheat (Triticum aestivum L.) callus derived from mature and immature embryos during in vitro culture. Frontiers in Plant Science, 7, 1302.  https://doi.org/10.3389/fpls.2016.01302.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chuang, S. J., Chen, C. L., Chen, J. J., Chou, W. Y., & Sung, J. M. (2009). Detection of somaclonal variation in micro-propagated Echinacea purpurea using AFLP marker. Scientia Horticulturae, 120(1), 121–126.CrossRefGoogle Scholar
  22. Daniel, A., Kalidass, C., & Mohan, V. R. (2010). In vitro multiple shoot induction through axillary bud of Ocimum basilicum L. an important medicinal plant. International Journal of Biological Technology, 1(1), 24–28.Google Scholar
  23. De Souza, A. V., et al. (2007). In vitro propagation of Lychnophora pinaster (Asteraceae): A threatened endemic medicinal plant. Hsc, 42(7), 1665–1669.Google Scholar
  24. Debnath, M., Malik, C. P., & Bisen, P. S. (2006). Micropropagation: A tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology, 7, 33–49.PubMedCrossRefGoogle Scholar
  25. Deventhiran, M., John, W. W., Sheik, N. M. M., Jaikumar, K., Saravanan, P., & Anand, D. (2017). In vitro propagation and comparative phytochemical analysis of wild plant and micropropagated Cleome rutidosperma DC. International Journal of Pharmacognosy and Phytochemical Research, 9(2), 253–257.Google Scholar
  26. Dohling, S., Kumaria, S., & Tandon, P. (2012). Multiple shoot induction from axillary bud cultures of the medicinal orchid, Dendrobium longicornu. AoB Plants, 2012, pls032.  https://doi.org/10.1093/aobpla/pls032.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Duncan, R. R. (1997). Tissue culture-induced variation and crop improvement. Advances in Agronomy, 58, 201–240.CrossRefGoogle Scholar
  28. Faizal, A., Lambert, E., Foubert, K., Apers, S., & Danny, G. (2011). In vitro propagation of four saponin producing Maesa species. Plant Cell Tissue and Organ Culture, 106, 215–223.CrossRefGoogle Scholar
  29. Esmaeili, F., Shooshtari, L., Ghorbanpour, M., & Etminan, A. (2014). Assessment of somaclonal variation in Plantago major using molecular markers. Journal of Biodiversity and Environmental Sciences (JBES), 5(4), 402–408.Google Scholar
  30. Ferreyra, M. L., Falcone, R. S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(222), 1–15.Google Scholar
  31. Gould, A. R. (1986). Factors controlling generations of variability in vitro. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics in plants. 3. Plant regeneration and genetic variability (pp. 549–567). Orlando: Academic.CrossRefGoogle Scholar
  32. Govinden-Soulange, J., Somanah, D., Ranghoo-Sanmukhiya, M., Boodia, N., & Rajkomar, B. (2010). Detection of somaclonal variation in micropropagated Hibiscus sabdariffa L. using RAPD markers. University of Mauritius Research Journal, 1–13.Google Scholar
  33. Goyal, A. K., Pradhan, S., Basistha, B. C., & Sen, A. (2015). Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech, 5, 473–482.PubMedCrossRefGoogle Scholar
  34. Hao, Y. J., & Deng, X. X. (2003). Genetically stable regeneration of apple plants from slow growth. Plant Cell, Tissue and Organ Culture, 72, 253–260.CrossRefGoogle Scholar
  35. Haque, S. M., & Ghosh, B. (2013). High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants. Botanical Studies, 54(46), 1–10.Google Scholar
  36. Hu, J., Gao, X., Liu, J., Xie, C., & Li, J. (2008). Plant regeneration from petiole callus of Amorphophallus albus and analysis of somaclonal variation of regenerated plants by RAPD and ISSR markers. Botanical Studies, 49, 189–197.Google Scholar
  37. Hu, J.-B., Li, Q., & Li, J. (2011). ISSR analysis of somaclonal variation in callus-derived plants of Amorphophalus rivieri Durieu. Acta Biologica Cracoviensia Series Botanica, 53(1), 120–124.Google Scholar
  38. Ilahi, I., Rahim, F., & Jabeen, M. (2007). Enhanced clonal propagation and alkaloid biosynthesis in cultures of Rauwolfia. Pakistan Journal of Biological Sciences, 13(1), 45–56.Google Scholar
  39. Iriawati, Rahmawati, A., & Esyanti, R. R. (2014). Analysis of secondary metabolite production in somatic embryo of Pasak Bumi (Eurycoma longifolia Jack.). Procedia Chemistry, 13, 112–118.CrossRefGoogle Scholar
  40. Iyer, R. I., Jayaraman, G., & Ramesh, A. (2009). Direct somatic embryogenesis in Myristica malabarica Lam., an endemic, threatened medicinal species of Southern India and detection of phytochemicals of potential medicinal value. Indian Journal of Science and Technology, 2(7), 11–17.Google Scholar
  41. Joshee, N., Biswas, B. K., & Yadav, A. K. (2007). Somatic embryogenesis and plant development in Centella asiatica L., a highly prized medicinal plant of the tropics. Hortscience, 42(3), 633–637.Google Scholar
  42. Joshi P and Dhawan (2007) Axillary multiplication of Swertia chirayita (Roxb. Ex Fleming) H. Karst., a critically endangered medicinal herb of temperate Himalayas. In Vitro Cellular and Developmental Biology Plant 43(6):631–638.Google Scholar
  43. Kaeppler, S. M., Kaeppler, H. F., & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology, 43, 179–188.PubMedCrossRefGoogle Scholar
  44. Karalija, E., & Parić, A. (2011). The effect of BA and IBA on the secondary metabolite production by shoot culture of Thymus vulgaris L. Biologica Nyssana, 2(1), 29–35.Google Scholar
  45. Karp, A. (1994). Origins, causes and uses of variation in plant tissue cultures. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 139–152). Dordrecht: Kluwer Academic Publishers.Google Scholar
  46. Kaul, S., Das, S., & Srivastava, P. S. (2013). Micropropagation of Ajuga bracteosa, a medicinal herb. Physiology and Molecular Biology of Plants, 19(2), 289–296.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kaushal, S., Sidana, A., & Dev, K. (2014). In vitro plant production through apical meristem culture of Gentiana kurroo Royle. Journal of Medicinal Plants Studies, 3(1), 04–09.Google Scholar
  48. Khanpour-Ardestani, N., Sharifi, M., & Behmanesh, M. (2015). Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: An in vitro approach for acteoside production. Cytotechnology, 67, 475–485.PubMedCrossRefGoogle Scholar
  49. Kher, M. M., Joshi, D., Nekkala, S., Nataraj, M., & Raykundaliya, D. P. (2014). Micropropagation of Pluchea lanceolata (Olier & Hiern.) using nodal explant. Journal of Horticultural Research, 22(1), 35–39.CrossRefGoogle Scholar
  50. Kour, B., Kour, G., Kaul, S., & Dhar, M. K. (2014). In Vitro mass multiplication and assessment of genetic stability of In Vitro raised Artemisia absinthium L. plants using ISSR and SSAP molecular markers. Advances in Botany, 2014, 1–7.CrossRefGoogle Scholar
  51. Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(54), 1–18.Google Scholar
  52. Kshirsagar, P. R., Chavan, J. J., Umdale, S. D., Nimbalkar, M. S., Dixt, G. B., & Gaikwad, N. B. (2015). Highly efficient in vitro regeneration, establishment of callus and cell suspension cultures and RAPD analysis of regenerants of Swertia lawii Burkill. Biotechnology Reports, 6, 79–84.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kumar, V., Moyo, M., & Staden, J. V. (2017). Somatic embryogenesis in Hypoxis hemerocallidea: An important African medicinal plant. South African Journal of Botany, 108, 331–336.CrossRefGoogle Scholar
  54. Kurdyukov, S., Mathesius, U., Nolan, K. E., Sheahan, M. B., Goffard, N., Carroll, B. J., & Rose, R. J. (2014). The 2HA line of Medicago truncatula has characteristics of an epigenetic mutant that is weakly ethylene insensitive. BMC Plant Biology, 14, 174.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kutchin, T. M. (1998). Molecular genetics of plant alkaloid biosynthesis. In G. Cordell (Ed.), The alkaloids (Vol. 50, pp. 257–316). San Diego: Academic.Google Scholar
  56. Laibach, F. (1929). Ectogenesis in plants: Methods and genetic possibilities of propagating embryos otherwise dying in the seed. Journal of Heredity, 20, 201–208.CrossRefGoogle Scholar
  57. Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation: A novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60, 197–214.PubMedCrossRefGoogle Scholar
  58. Law, R. D., & Suttle, J. C. (2005). Chromatin remodeling in plant cell culture: Patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. Plant Physiology and Biochemistry, 43, 527–534.PubMedCrossRefGoogle Scholar
  59. Lopez-Arellano, M., Dhir, S., Albino, N. C., Santiago, A., & Morris T Dhir, S. K. (2015). Somatic embryogenesis and plantlet regeneration from protoplast culture of Stevia rebaudiana. British Biotechnology Journal, 5(1), 1–12.CrossRefGoogle Scholar
  60. Lucchesini, M., Bertoli, A., Mensuali-Sodi, A., & Pistelli, L. (2009). Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds. Scientia Horticulturae, 122, 484–490.CrossRefGoogle Scholar
  61. Luo, Y.-C., Zhou, H., Li, Y., Chen, J.-Y., Yang, J.-H., Chen, Y.-Q., & Qu, L.-H. (2006). Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. Febes Letters, 580, 5111–5116.CrossRefGoogle Scholar
  62. Mahdieh, M., Noori, M., & Hoseinkhani, S. (2015). Studies of in vitro adventitious root induction and flavonoid profiles in Rumex crispus. Advanced Life Sciences, 5(3), 53–57.Google Scholar
  63. Maraschin, M., Sugui, J. A., Wood, K. V., Bonham, C., Buchi, D. F., Cantao, M. P., Carobrez, S. G., Araujo, P. S., Peixoto, M. L., Verpoorte, R., & Fontana, J. D. (2002). Somaclonal variation: A morphogenetic and biochemical analysis of Mandevilla velutina cultured cells. Brazilian Journal of Medical and Biological Research, 35, 633–643.PubMedCrossRefGoogle Scholar
  64. Meena, M. K., Singh, N., & Patni, V. (2012). In vitro multiple shoot induction through axillary bud of Cocculus hirsutus (L.) Diels: A threatened medicinal plant. African Journal of Biotechnology, 11(12), 2952–2956.Google Scholar
  65. Miguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. Journal of Experimental Botany, 62(11), 3713–3725.PubMedCrossRefGoogle Scholar
  66. Mittal, J., & Sharma, M. M. (2017). Enhanced production of berberine in In vitro regenerated cell of Tinospora cordifolia and its analysis through LCMS QToF. 3 Biotech, 7(25), 1–12.Google Scholar
  67. Mohanty, S., Panda, M. K., Subudhi, E., Acharya, L., & Nayak, S. (2008). Genetic stability of micropropagated ginger derived from axillary bud through cytophotometric and RAPD analysis. Zeitschrift für Naturforschung, 63c, 747–754.CrossRefGoogle Scholar
  68. Moon, H.-K., Kim, Y.-W., Hong, Y.-P., & Park, S.-Y. (2013). Improvement of somatic embryogenesis and plantlet conversion in Oplopanax elatus, an endangered medicinal woody plant. Springerplus, 2(428), 1–8.Google Scholar
  69. Mulabagal, V., & Tsay, H.-S. (2004). Plant cell cultures – An alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2(1), 29–48.Google Scholar
  70. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and Bioassy with tobacco tissue culture. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  71. Nadha, H. K., Kumar, R., Sharma, R. K., Anand, M., & Sood, A. (2011). Evaluation of clonal fidelity of in vitro raised plants of Guadua angustifolia Kunth using DNA-based markers. Journal of Medicinal Plant Research, 5(23), 5636–5641.Google Scholar
  72. Nagesh, K. S., Shanthamma, C., & Pullaiah, T. (2010). Somatic embryogenesis and plant regeneration from callus cultures of Curculigo orchioides Gaertn. Indian Journal of Biotechnology, 9, 408–413.Google Scholar
  73. Nakka, S., & Devendra, B. N. (2012). A rapid in vitro propagation and estimation of secondary metabolites for in vivo and in vitro propagated Crotalaria species, a Fabaceae member. Journal of Microbiology, Biotechnology and Food Sciences, 2(3), 897–916.Google Scholar
  74. Nandhini, R. S., Bayyapureddy, A., & Reji, J. V. (2015). An enhanced In Vitro production of Saponins and other bioactives from Bacopa monnieri L. Penn. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(3), 446–451.Google Scholar
  75. Ngezahayo, F., & Liu, B. (2014). Axillary bud proliferation approach for plant biodiversity conservation and restoration. International Journal of Biodiversity, 2014, 1–9.CrossRefGoogle Scholar
  76. Nikam, T. D., & Savant, R. S. (2009). Multiple shoot regeneration and alkaloid cerpegin accumulation in callus culture of Ceropegia juncea Roxb. Physiology and Molecular Biology of Plants, 15(1), 71–77.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Obae, S. G., Klandorf, H., & West, T. P. (2011). Growth characteristics and Ginsenosides production of In Vitro tissues of American ginseng, Panax quinquefolius L. Hortscience, 46(8), 1136–1140.Google Scholar
  78. Opabode, J. T., Akinyemiju, A. O., & Ayeni, O. O. (2011). Plant regeneration via somatic embryogenesis from immature leaves in Tetrapleura tetraptera (SCHUM. & THONN.) TAUB. Archives of Biological Sciences, 63(4), 1135–1145.CrossRefGoogle Scholar
  79. Panda, M. K., Mohanty, S., Subudi, E., Acharya, L., & Nayak, S. (2007). Assessment of genetic stability of micropropagated plants of Curcuma longa L. by cytophotometry and RAPD analyses. International Journal of Integrative Biology, 1(3), 189–195.Google Scholar
  80. Pant, B. (2013). Medicinal orchids and their uses: Tissue culture a potential alternative for conservation. African Journal of Plant Science, 7(10), 448–467.CrossRefGoogle Scholar
  81. Pant, B. (2014). Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants. Advances in Experimental Medicine and Biology, 808, 25–39.PubMedCrossRefGoogle Scholar
  82. Parida, R., Mohanty, S., & Nayak, S. (2011). Evaluation of genetic fidelity of in vitro propagated GREATER GALANGAL (Alpinia galanga L.) using DNA based markers. International Journal of Plant, Animal and Environmental Sciences, 1(3), 123–133.Google Scholar
  83. Pathak, S., Mishra, B. K., Misra, P., Misra, P., Joshi, V. K., Shukla, S., & Trivedi, P. K. (2012). High frequency somatic embryogenesis, regeneration and correlation of alkaloid biosynthesis with gene expression in Papaver somniferum. Plant Growth Regulation, 68, 17–25.CrossRefGoogle Scholar
  84. Patil, K. S., & Bhalsing, S. R. (2015). Efficient micropropagation and assessment of genetic fidelity of Boerhaavia diffusa L- High trade medicinal plant. Physiology and Molecular Biology of Plants, 21(3), 425–432.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Poehlman, J. M. (1987). Plant cell and tissue culture applications in plant breeding. In Breed field crop (pp. 148–170).CrossRefGoogle Scholar
  86. Prakash, E., Khan, S. V., Meru, E., & Rao, K. R. (2001). Somatic embryogenesis in Pimpinella tirupatiensis Bal. and subr., an endangered medicinal plant of Tirumala hills. Current Science, 81(9, 10), 1239–1242.Google Scholar
  87. Ptak, A., Tahchy, A. E., Skrzypek, E., Wójtowicz, T., & Laurain-Mattar, D. (2013). Influence of auxins on somatic embryogenesis and alkaloid accumulation in Leucojum aestivum callus. Central European Journal of Biology, 8(6), 591–599.Google Scholar
  88. Puhan, P., & Rath, S. P. (2012). In vitro propagation of Aegle marmelos (L.) corr., a medicinal plant through axillary bud multiplication. Advances in Bioscience and Biotechnology, 3, 121–125.CrossRefGoogle Scholar
  89. Qiao, M., & Xiang, F. (2013). A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro. Plant Signaling & Behavior, 8(3), e23479.  https://doi.org/10.4161/psb.23479.CrossRefGoogle Scholar
  90. Reddy, S. H., Chakravarthi, M., & Chandrashekara, K. N. (2012). In vitro multiple shoot induction through axillary bud of Asclepias curassavica L. – A valuable medicinal plant. International Journal of Scientific Research, 2(8), 1–7.CrossRefGoogle Scholar
  91. Roopadarshini, V., & Gayatri, M. C. (2012). Isolation of somaclonal variants for morphological and biochemical traits in Curcuma longa (turmeric). Research in Plant Biology, 2(3), 31–37.Google Scholar
  92. Sahai, A., Shahzad, A., & Anis, M. (2010). High frequency plant production via shoot organogenesis and somatic embryogenesis from callus in Tylophora indica, an endangered plant species. Turkish Journal of Botany, 34, 11–20.Google Scholar
  93. Sahoo, S., & Rout, G. R. (2014). Plant regeneration from leaf explants of Aloe barbadensis mill. And genetic fidelity assessment through DNA markers. Physiology and Molecular Biology of Plants, 20(2), 235–240.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Saini, R. K., Shetty, N. P., Giridhar, P., & Ravishankar, G. A. (2012). Rapid in vitro regeneration method for Moringa oleifera and performance evaluation of field grown nutritionally enriched tissue cultured plants. 3 Biotech, 2, 187–192.PubMedCentralCrossRefPubMedGoogle Scholar
  95. Saravanan, S., Sarvesan, R., & Vinod, M. S. (2011). Identification of DNA elements involved in somaclonal variants of Rauvolfia serpentina (L.) arising from indirect organogenesis as evaluated by ISSR analysis. Indian Journal of Science and Technology, 4(10), 1241–1245.Google Scholar
  96. Sasikumar, S., Raveendar, S., Premkumar, A., Ignacimuthu, S., & Agastian, P. (2009). Micropropagation of Baliospermum montanum (wild.) Muell. Arg.- a threatened medicinal plant. Indian Journal of Biotechnology, 8, 223–226.Google Scholar
  97. Sebastinraj, J., & Sidique, K. M. I. (2011). In vitro rapid clonal propagation of Aristolochia bracteolata lam. (Aristolochiaceae)- A valuable medicinal plant. World Journal of Agricultural Sciences, 7(6), 653–658.Google Scholar
  98. Senapati, S. K., Aparajita, S., & Rout, G. (2013). Micropropagation and assessment of genetic stability in Celastrus paniculatus: An endangered medicinal plant. Biologia, 68(4), 627–632.CrossRefGoogle Scholar
  99. Sharma, M. M., Verma, R. N., Singh, A., & Batra, A. (2014). Assessment of clonal fidelity of Tylophora indica (Burm. f.) Merrill “in vitro” plantlets by ISSR molecular markers. Springer Plus, 3(400), 1–9.Google Scholar
  100. Sharmin, S. A., Alam, M. J., Sheikh, M. M. I., Sarker, K. K., Khalekuzzaman, M., Haque, M. A., Alam, M. F., & Alam, I. (2014). Somatic embryogenesis and plant regeneration in Wedelia calendulacea less. An endangered medicinal plant. Brazilian Archives of Biology and Technology, 57(3), 394–401.CrossRefGoogle Scholar
  101. Shooshtari, L., Omidi, M., Majidi, E., Naghavi, M., Ghorbanpour, M., & Etminan, A. (2013). Assessment of somaclonal variation of regenerated Ducrosia anethifolia plants using AFLP markers. Journal of Horticultural Science and Biotechnology, 17(4), 99–106.Google Scholar
  102. Singh, P., Singh, A., Shukla, A. K., Singh, L., Pande, V., & Nailwal, T. K. (2009). Somatic embryogenesis and in vitro regeneration of an endangered medicinal plant sarpgandha (Rauvolfia serpentina L.). Life Science Journal, 6(2), 57–62.Google Scholar
  103. Sivanandhan, G., Vasudevan, V., Selvaraj, N., Lim, Y. P., & Ganapathi, A. (2015). L-Dopa production and antioxidant activity in Hybanthus enneaspermus (L.) F. Muell regeneration. Physiology and Molecular Biology of Plants, 1(3), 395–406.CrossRefGoogle Scholar
  104. Smulders, M. J. M., & de Klerk, G. J. (2011). Epigenetics in plant tissue culture. Plant Growth Regulation, 63, 137–146.CrossRefGoogle Scholar
  105. Soni, M., & Kaur, R. (2014). Rapid in vitro propagation, conservation and analysis of genetic stability of Viola pilosa. Physiology and Molecular Biology of Plants, 20(1), 95–101.PubMedCrossRefGoogle Scholar
  106. Srinivas, D., & Reddy, K. J. (2017). Plant regeneration studies in Euphorbia fusiformis through somatic embryo genesis. Biotechnology Journal International, 17(2), 1–6.CrossRefGoogle Scholar
  107. Srivastava, P., Sisodia, V., & Chaturvedi, R. (2011). Effect of culture conditions on synthesis of triterpenoids in suspension cultures of Lantana camara L. Bioprocess and Biosystems Engineering, 34, 75–80.PubMedCrossRefGoogle Scholar
  108. Sudarshana, M. S., Niranjan, M. H., & Girisha, S. T. (2008). In vitro flowering, somatic embryogenesis and regeneration in Boerhaavia diffusa Linn. – a medicinal plant. Global Journal of Biotechnology and Biochemistry, 3(2), 83–86.Google Scholar
  109. Szyrajew, K., Bielewicz, D., Dolata, J., Wójcik, A. M., Nowak, K., Szczygieł-Sommer, A., Szweykowska-Kulinska, Z., Jarmolowski, A., & Gaj, M. D. (2017). MicroRNAs are intensively regulated during induction of somatic embryogenesis in Arabidopsis. Frontiers in Plant Science, 8, 18.  https://doi.org/10.3389/fpls.2017.00018.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Tanurdzic, M., Vaughn, M. W., Jiang, H., Lee, T.-J., Slotkin, R. K., Sosinski, B., Thompson, W. F., Doerge, R. W., & Martienssen, R. A. (2008). Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biology, 6, e302.PubMedCentralCrossRefPubMedGoogle Scholar
  111. Taskin, H., Baketmur, G., Kurul, M., & Buyukalaca. (2013). Use of tissue culture techniques for producing virus-free plant in garlic and their identification through real time PCR. The Scientific World Journal, 781282, 1–5.CrossRefGoogle Scholar
  112. Thangavel, K., Maridass, M., Sasikala, M., & Ganesan, V. (2008). In vitro micropropagation of Talinum portulacifolium L. through axillary bud culture. Ethnobot Leaflets, 12, 413–418.Google Scholar
  113. Trevor, A. T. (2007). History of plant tissue culture. Molecular Biotechnology, 37, 169–180.CrossRefGoogle Scholar
  114. Us-Camas, R., Rivera-Solís, G., Duarte-Aké, F., & De-la-Peña, C. (2014). In vitro culture: An epigenetic challenge for plants. Plant Cell, Tissue and Organ Culture, 118, 187–201.CrossRefGoogle Scholar
  115. Viehmannova, I., Bortlova, Z., Vitamvas, J., Cepkova, P. H., Eliasova, K., Svobodova, E., & Travnickova, M. (2014). Assessment of somaclonal variation in somatic embryo-derived plants of yacon [Smallanthus sonchifolius (Poepp. and Endl.) H. Robinson] using intersimple sequence repeat analysis and flow cytometry. Electronic Journal of Biotechnology, 17, 102–106.CrossRefGoogle Scholar
  116. Wang, J., Qian, J., Yao, L., & Lu, Y. (2015). Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresources and Bioprocessing, 2(5), 1–9.Google Scholar
  117. Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C., & Qi, Y. (2010). DNA methylation mediated by a MicroRNA pathway. Molecular Cell, 38, 465–475.PubMedCrossRefGoogle Scholar
  118. Yaacob, J. S., Taha, R. M., Jaafar, N., Hasni, Z., Elias, H., & Mohamed, N. (2013). Callus induction, plant regeneration and somaclonal variation in in vivo and in vitro grown white shrimp plant (Justicia betonica Linn.). Australian Journal of Crop Science, 7(2), 281–288.Google Scholar
  119. Yadav, K., Kumar, S., & Singh, N. (2014). Genetic fidelity assessment of Spilanthes acmella (L.) Murr. By RAPD and ISSR markers assay. Indian Journal of Biotechnology, 13, 274–277.Google Scholar
  120. Yang, J., Wu, S., & Li, C. (2013a). High efficiency secondary somatic embryogenesis in Hovenia dulcis Thunb. through solid and liquid cultures. The Scientific World Journal, 2013, Article ID 718754 6 pages.Google Scholar
  121. Yang, X., Wang, L., Yuan, D., Lindsey, K., & Zhang, X. (2013b). Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. Journal of Experimental Botany, 64(6), 1521–1536.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang, F.-S., Lv, Y.-l., Zhao, Y., & Guo, S.-X. (2009). Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of Anoectochilus formosanus Hayata, a rare and threatened medicinal Orchidaceae plant. Journal of Zhejiang University. Science. B, 14(9), 785–792.CrossRefGoogle Scholar
  123. Zhang, F., Yali, L. V., Dong, H., & Guo, S. (2010). Analysis of genetic stability through Intersimple sequence repeats molecular markers in micropropagated plantlets of Anoectochilus formosanus H AYATA, a medicinal plant. Biological & Pharmaceutical Bulletin, 33(3), 384–388.CrossRefGoogle Scholar
  124. Zhang, M., Dong, Y., Nie, L., Lu, M., Fu, C., & Yu, L. (2015). High-throughput sequencing reveals miRNA effects on the primary and secondary production properties in long-term subcultured Taxus cells. Frontiers in Plant Science, 6, 1–12.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Frédéric Ngezahayo
    • 1
  1. 1.Unité de Recherche Multidisciplinaire du Département des Sciences NaturellesEcole Normale SupérieureBujumburaBurundi

Personalised recommendations