In Vitro Manipulations for Value Addition in Potent Herbal Insecticidal Activities of Chrysanthemum cinerariaefolium

  • Shamshad A. Khan
  • Priyanka Verma
  • Varsha A. Parasharami
  • Laiq Ur Rahman


The Chrysanthemum genus belongs to the genus Asteraceae which covers up to 15% of all the species of this genus. The natural insecticidal compound pyrethrin is found in C. cinerariaefolium and mostly found in the aerial parts such as achenes of the flowers. Chemically pyrethrin is a set of six structurally close monoterpene esters formed by esterification of two monoterpenic acids (chrysanthemic acid and pyrethric acid) with three ketone alcohols (pyrethrolone, cinerolone and jasmolone). The side effects of the chemical analogue of this molecule and eco-friendly action of pyrethrin such as rapid degradation into the environment and swift action against insects make this molecule the ultimate choice for scale-up industries thus far making this plant system of uttermost importance which needs biotechnological intervention. The in vitro research in this plant system is not completely achieved as the whole pathway-level understanding is not fully understood. Apart from it, the regeneration-level protocols in C. cinerariaefolium have not been established to the par, and Agrobacterium-based genetic transformation studies are limited which could have paved the way for better pathway-level studies, gene transfer studies and new variety development with higher pyrethrin content. The present chapter discusses the present scenario and future prospects of in vitro pyrethrin production.


Chrysanthemum cinerariaefolium In vitro culture Genetic transformation Pyrethrin 



We gratefully acknowledge the financial support received from the Department of Science and Technology (DST) as DST-SERB Young Scientist Fellowship (Ministry/Department Letter No. YSS/2015/001417) Government of India.


  1. Abad, M. J., Bermejo, P., & Villar, A. (1995). An approach to the genus Tanacetum L. (Compositae): Phytochemical and pharmacological review. Phytotherapy Research, 9, 79–92.CrossRefGoogle Scholar
  2. Ahmed, S. A., Shawkat, M. S., & Ibrahim, K. M. (2011). Production of Pyrethrins in tissue cultures of pyrethrum (Chrysanthemum cinerariaefolium). Al-Mustansiriyah Journal of Science, 22, 6.Google Scholar
  3. Allan, C. G., & Miller, T. A. (1990). Long-acting pyrethrin formulations. In J. E. Casida (Ed.), Pesticides and alternatives: Innovative chemical and biological approaches to pest control (pp. 357–364). Amsterdam: Elsevier Science Publishers.Google Scholar
  4. Bakry, F. A. (2009). Impact of some plant extracts on histological structure and protein patterns of Biomphalaria alexandrina snails. Global Journal of Molecular Sciences, 4, 34–41.Google Scholar
  5. Balandrin, M. F., & Klocke, J. A. (1988). Medicinal, aromatic, and industrial materials from plants. In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry, medicinal and aromatic plants I. Berlin: Springer-Verlag.Google Scholar
  6. Bhat BK (1995) Breeding methodologies applicable to pyrethrum. In: Pyrethrum flowers. Production, chemistry, toxicology, and uses. 67–95. Casida, J. E. and Quistad, G. B. Oxford University Press, Oxford.Google Scholar
  7. Bhat, B. K., & Menary, R. C. (1984a). Pyrethrum production in Australia: Its past and present potential. The Journal of the Australian Institute of Agricultural Science, 52, 189–192.Google Scholar
  8. Bhat, B. K., & Menary, R. C. (1984b). Registration of Hypy pyrethrum. Crop Science, 24, 619–620.CrossRefGoogle Scholar
  9. Bisht, C., Badoni, A., Vashishtha, R. K., & Nautiyal, M. C. (2009). Photoperiodic effect on seed germination in pyrethrum (Chrysanthemum cinerariaefolium vis.) under the influence of some growth regulators. Journal of American Science, 5, 147–150.Google Scholar
  10. Boase, M. R., Borst, N. K., & Bradley, J. M. (1988). Chrysanthemum cultivar, agrobacterium interactions revealed by GUS expression time course experiments. Scientia Horticulturae, 77, 89–107.CrossRefGoogle Scholar
  11. Cashyap, M. M., Kueh, J. S. H., MacKenzie, I. A., & Pattenden, G. (1978). In vitro synthesis of pyrethrins from tissue cultures of Tanacetum cinerariaefolium. Phytochemistry, 7, 544–545.CrossRefGoogle Scholar
  12. Cheetham, P. S. J. (1995). Biotransformations: New routes to food ingredients. Chemistry and Industry, 7, 265–268.Google Scholar
  13. Chen, W. H., Chen, T. M., Fu, Y. M., Hsieh, R. M., & Chen, W. S. (1998). Studies on somaclonal variation in Phalaenopsis. Plant Cell Reports, 18, 7–13.CrossRefGoogle Scholar
  14. Chumsri, P., & Staba, E. J. (1975). Pyrethrin content and larvicidal activity of Chrysanthemum plant and tissue cultures. Academy of Pharmaceutical Sciences, 5, 169–172.Google Scholar
  15. Crombie, L. (1980). Chemistry and biochemistry of natural pyrethrins. Pesticide Science, 11, 102–118.CrossRefGoogle Scholar
  16. Crowley, M. P., Inglis, H. S., Snarey, M., & Thain, E. M. (1961). Biosynthesis of pyrethrins. Nature, 191, 281–282.CrossRefPubMedGoogle Scholar
  17. Crowley, M. P., Godin, P. J., Inglis, H. S., Snarey, M., & Thain, E. M. (1962). The biosynthesis of the ‘Pyrethrins’ I. The incorporation of 14C-labelled compounds into the flowers of Chrysanthemum cinerariaefolium and the biosynthesis of chrysanthemum monocarboxylic acid. Biochimica Biophysica Acta, 60, 312–319.CrossRefGoogle Scholar
  18. Davies, J. H. (1985). The pyrethroids: A historical introduction. In J. P. Leahey (Ed.), The pyrethrum insecticides (pp. 1–41). London: Taylor and Francis.Google Scholar
  19. Dessalgne, F. H., Mekonnen, S. A., & Idris, B. A. (2011). Variability of pyrethrum (Chrysanthemum cinerariaefolium) clone for chemical traits grown at Bekoji and Meraro of south eastern Ethiopia. International Journal of Medicinal and Aromatic Plants, 1, 166–174.Google Scholar
  20. Devitt-Lee, A., Smith, D. R., Chen, D., McKernan, K., Groves, S., & McCarthy, C. (2017). Endogenous synthesis of pyrethrins by cannabis. BioRxiv, 169417.
  21. Dhar, K., & Pal, A. (1993). Factors influencing efficient pyrethrin production in undifferentiated cultures of Chrysanthemum cinerariaefolium. Fitoterapia, LXIV, 336–340.Google Scholar
  22. Fujita, Y. (1988). Industrial production of shikonin and berberine. In G. Bock & J. Marsh (Eds.), Applications of plant cell and tissue culture (pp. 228–235). Chichester: Wiley.Google Scholar
  23. George, J., Rajasekaran, T., & Ravishankar, G. A. (1999). A modified culture vessel for improved callus growth and pyrethrins content of pyrethrum (Chrysanthemum cinerariaefolium Vis.). Pyrethrum Post, 20, 49–54.Google Scholar
  24. Giri, A., & Narasu, M. L. (2000). Transgenic hairy roots: Recent trends and applications. Biotechnology Advances, 18, 1–22.CrossRefPubMedGoogle Scholar
  25. Godin, P. J., Inglis, H. S., Snarey, M., & Thain, E. M. (1963). Biosynthesis of the pyrethrins. Part II. Pyrethric acid and the origin of ester-methyl groups. Journal of Chemical Society (B): 5878–5880.Google Scholar
  26. Gomez-Galera, S., Pelacho, A. M., & Gene, A. (2007). The genetic manipulation of medicinal and aromatic plants. Plant Cell Reports, 26, 1689–1715.CrossRefPubMedGoogle Scholar
  27. Grewal, S., & Sharma, K. (1978). Clonal multiplication of medicinal plants by tissue culture. Part IV. Pyrethrum plant (Chrysanthemum cinerariaefolium Vis.) regeneration from shoot tip culture. Indian Journal of Experimental Biology, 16, 1119.Google Scholar
  28. Gupta, V., & Rahman, L. (2015). An efficient plant regeneration and Agrobacterium-mediated genetic transformation of Tagetes erecta. Protoplasma, 252, 1061–1070. Scholar
  29. Head, S. W. (1966). A study of the insecticidal constituents in Chrysanthemum cinerariaefolium. Pyrethrum Post, 8, 32–37.Google Scholar
  30. Head, S. W. (1967). A study of the insecticidal constituents of Chrysanthemum cinerariaefolium. (3) Their composition in different pyrethrum clones. Pyreth Post, 9, 3–7.Google Scholar
  31. Head, S. W. (1969). The composition of pyrethrum extract. Pyrethrum Post, 10(2), 17–21.Google Scholar
  32. Hedayat, M., Abdi, G., & Khosh-Khui, M. (2009). Regeneration via direct organogenesis from leaf and petiole segments of pyrethrum [Tanacetum cinerariifolium (Trevir.) Schultz-Bip.]. American-Eurasian Journal of Agricultural and Environmental Science, 6, 81–87.Google Scholar
  33. Hemmerlin, A., Rivera, S. B., Erickson, H. K., & Poulter, C. D. (2003). Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentata ssp. spiciformis. The Journal of Biological Chemistry, 278, 32132–32140.CrossRefPubMedGoogle Scholar
  34. Heywood, V. H., & Humphries, C. J. (1977). Anthemideae-systematic review. In V. H. R. Heywood, J. B. Harborne, & B. L. Turner (Eds.), The biology and chemistry of the Compositae. Volume II (pp. 851–897). London: Academic Press.Google Scholar
  35. Hitmi, A., Barthomeuf, C., & Sallanon, H. (1999). Rapid mass propagation of Chrysanthemum cinerariaefolium Vis. by callus culture and ability to synthesise pyrethrins. Plant Cell Reports, 19, 156–160.CrossRefGoogle Scholar
  36. Hitmi, A., Coudret, A., & Barthomeuf, C. (2000). The production of Pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Critical Reviews in Biochemistry and Molecular Biology, 35, 317–337.CrossRefPubMedGoogle Scholar
  37. Jain, S. C. (1977). Chemical investigation of Tagetes tissue cultures. Planta Medica, 31, 68–70.CrossRefPubMedGoogle Scholar
  38. Jovetic, S., & De Gooijer, C. D. (1995). The production of pyrethrins by in vitro systems. Critical Reviews in Biotechnology, 15, 125–138.CrossRefGoogle Scholar
  39. Kai, G., Yang, S., Zhang, Y., Luo, X., Fu, X., Zhang, A., & Xiao, J. (2012). Effects of different elicitors on yield of tropane alkaloids in hairy roots of Anisodus acutangulus. Molecular Biology Reports, 39, 1721–1729.CrossRefPubMedGoogle Scholar
  40. Kennedy, M. K., & Hamilton, R. L. (1995). Pyrethrum for control of insects in the home. In J. E. Casida & G. B. Quistad (Eds.), Pyrethrum flowers. Production, chemistry, toxicology, and uses (pp. 311–327). New York: Oxford University Press.Google Scholar
  41. Khan, S. A., Verma, P., Banerjee, S., Chaterjee, A., Tandon, S., Kalra, A., Khaliq, A., & Rahman, L. (2016). Pyrethrin accumulation in elicited hairy root cultures of Chrysanthemum cinerariaefolium. Plant Growth Regulation.
  42. Khan, S., Upadhyay, S., Khan, F., Tandon, S., Shukla, R. K., Ghosh, S., Gupta, V., Banerjee, S., & Rahman, L. (2017). Comparative transcriptome analysis reveals candidate genes for the biosynthesis of natural insecticide in Tanacetum cinerariifolium. BMC Genomics, 18, 54. Scholar
  43. Khanna, P., & Khanna, R. (1976). Endogenous free ascorbic acid and effect of exogenous ascorbic acid on growth and production of Pyrethrins from in vitro culture of Tagetes erecta L. Indian Journal of Experimental Biology, 14, 630–631.Google Scholar
  44. Kikuta, Y., Ueda, H., Nakayama, K., Katsuda, Y., Ozawa, R., Takabayashi, J., Hatanaka, A., & Matsuda, K. (2011). Plant & Cell Physiology, 52, 588–596.CrossRefGoogle Scholar
  45. Kikuta, Y., Ueda, H., Nakayama, K., Katsuda, Y., Ozawa, R., Takabayashi, J., Hatanaka, A., & Matsuda, K. (2012). Plant & Cell Physiology, 52, 588–596.CrossRefGoogle Scholar
  46. Kueh, J. S. H., MacKenzie, I. A., & Pattenden, G. (1985). Production of chrysanthemic acid and pyrethrins by tissue cultures of Chrysanthemum cinerariaefolium. Plant Cell Reports, 4, 118–119.CrossRefPubMedGoogle Scholar
  47. Lindiro, C., Kahia, J., Asiimwe, T., Mushimiyimana, I., Waweru, B., Kouassi, M., Koffi, E., Kone, S., & Sallah, P. Y. (2013). In vitro regeneration of pyrethrum (Chrysanthemum cinerariaefolium) plantlets from nodal explants of in vitro raised plantlets. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 2, 207–213.Google Scholar
  48. MacDonald, W. L. (1995). Pyrethrum flowers. Production, chemistry, toxicology and uses. New York: Oxford University Press, Inc.Google Scholar
  49. Mao, J., Cao, L., Kong, L., Jongsma, M. A., & Wang, C. (2013). An Agrobacterium-mediated transformation system of pyrethrum (Tanacetum cinerariifolium) based on leaf explants. Scientia Horticulturae, 150, 130–134.CrossRefGoogle Scholar
  50. Matsuda, K. (2012). Pyrethrin biosynthesis and its regulation in Chrysanthemum cinerariaefolium. Topics in Current Chemistry, 314, 73–82. Scholar
  51. Matsuda, K., Kikuta, Y., Haba, A., Nakayama, K., Katsuda, Y., & Hatanaka, A. (2005). Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium. Phytochemistry, 66, 1529–1535.CrossRefPubMedGoogle Scholar
  52. McDaniel, R. G. (1991). Pyrethrum plane named Arizona. Plant Pat US Pat Trademark Off 7495.Google Scholar
  53. Merillon, J. M., & Ramawat, K. G. (2007). Biotechnology for medicinal plants: Research need. In K. G. Ramawat & J. M. Merillon (Eds.), Biotechnology: Secondary metabolites (2nd ed., pp. 1–21). CRC Press. ISBN 9781578084289.Google Scholar
  54. Metcalf, R. L., & Metcalf, R. A. (1993). Destructive and useful insects: Their habits and Control. New York: McGraw-Hill.Google Scholar
  55. Mohandass, S., Sampath, V., & Gupta, R. (1986). Response of ambient temperatures on production of flowers in pyrethrum at Kodaikanal (India). Acta Horticulturae, 188, 163–165.CrossRefGoogle Scholar
  56. Nikam, S. L., & Khan, S. J. (2015). In – vitro production of pyrethrins from ray florets of Tagetes erecta l. World Journal of Pharmacy and Pharmaceutical Sciences, 4, 1983–1993.Google Scholar
  57. Obukosia, S. D., Kimani, E., Waithaka, K., Mutitu, E., & Kiman, P. M. (2005). Effects of growth regulators and genotypes on pyrethrum in vitro. In Vitro Cellular & Developmental Biology. Plant, 41, 162–166.CrossRefGoogle Scholar
  58. Panda, H. (2005). Herbs cultivation and medicinal uses (pp. 1–9). Delhi: National Institute of Industrial Research.Google Scholar
  59. Pandita, P. N., & Sharma, S. D. (1990). Pyrethrin content and dry-flower yield of some strains of Dalmatian pyrethrum (Tanacetum cinerariifolium). Indian Journal of Agricultural Sciences, 60, 693.Google Scholar
  60. Pattenden, G., & Storer, R. (1973). Studies on the biosynthesis of chrysanthemum monocarboxylic acid. Tetrahedron Letters, 36, 3475–3476.Google Scholar
  61. Paul, A., Dhar, K., & Pal, A. (1988). Organogenesis from selected culture lines of pyrethrum. Chrysanthemum cinerariaefolium Vis. Clone HSL 801. Pyrethrum Post, 17, 17–20.Google Scholar
  62. Rajasekaran, T., Rajendran, L., Ravishankar, G. A., & Venkataraman, L. V. (1990). Influence of medium constituents on growth and pyrethrins production in callus tissue of pyrethrum (Chrysanthemum cinerariaefolium Vis.). The Pyrethrum Post, 17, 121–124.Google Scholar
  63. Ramirez, A. M., Saillard, N., Yang, T., Franssen, M. C. R., Bouwmeester, H. J., & Jongsma, M. A. (2013). Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium). PLoS One, 8, 1–13.Google Scholar
  64. Rao, R. S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 101–153.CrossRefPubMedGoogle Scholar
  65. Ravishankar, G. A., Rajasekaran, T., Sarma, K. S., & Venkataraman, L. V. (1989). Production of pyrethrins in cultured tissues of pyrethrum Chrysanthemum cinerariaefolium Vis. Pyrethrum Post, 17, 66–69.Google Scholar
  66. Rivera, S. B., Swedlund, B. D., King, G. J., Bell, R. N., Hussey, C. E., Jr., Shattuck-Eidens, D. M., Wrobel, W. M., Peiser, G. D., & Poulter, C. D. (2001). Chrysanthemyl diphosphate synthase: Isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium. Proceedings of the National Academy of Sciences of the United States of America, 98, 4373–4378.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Roest, S., & Bokelmann, G. S. (1973). Vegetative propagation of Chrysanthemum cinerariaefoliumin vitro. Scientia Horticulturae, 1, 120–122.CrossRefGoogle Scholar
  68. Rohmer, M., Seemann, M., Horbach, S., Bringer Meyer, S., & Sahm, H. (1996). Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. Journal of the American Chemical Society, 118, 2564–2566.CrossRefGoogle Scholar
  69. Sakamori, K., Ono, N., Ihara, M., Suzuki, H., Matsuura, H., Tanaka, K., Ohta, D., Kanaya, S., & Matsuda, K. (2016). Selective regulation of pyrethrin biosynthesis by the specific blend of wound induced volatiles in Tanacetum cinerariifolium. Plant Signaling &Behavior, 11.
  70. Shoenig, G. P. (1995). Mammalian toxicology of pyrethrum extract. In J. E. Casida & G. B. Quistad (Eds.), Pyrethrum flowers. Production, chemistry, toxicology, and uses (pp. 249–257). Oxford: Oxford University Press.Google Scholar
  71. Singh, S. P., Sharma, J. R., Rao, B. R. R., & Sharma, S. K. (1988). Genetic improvement of pyrethrum: III. Choice of improved varieties and suitable ecological niches. Pyrethrum Post, 17, 12–16.Google Scholar
  72. Soreng, R. J., & Cope, E. A. (1991). On the taxonomy of cultivated species of the Chrysanthemum genus-complex (Anthemideae; Compositae). Baileya, 23, 145–165.Google Scholar
  73. Staba, E. J., & Zito, S. W. (1985). The production of pyrethrins by Chrysanthemum cinerariaefolium (Trev) Bocc. In A. Neumann, W. Barz, & E. Reinhard (Eds.), Primaryand secondary metabolism of plant cell cultures (pp. 209–214). Berlin/Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  74. Vanisree, M., Lee, C. Y., Lo, S. F., Nalawada, S. M., Lin, C. Y., & Tsay, H. S. (2004). Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Botanical Bulletin of Academia Sinica, 45, 1–22.Google Scholar
  75. Verma, P., Mathur, A. K., & Shanker, K. (2012). Growth, alkaloid production, rol genes integration, bioreactor up-scaling and plant regeneration studies in hairy root lines of Catharanthus roseus. Plant Biosyst, 146, 27–40.Google Scholar
  76. Wambugu, F. M., & Rangan, T. S. (1981). In vitro clonal multiplication of pyrethrum (Chrysanthemum cinerariaefolium Vis.) by micropropagation. Plant Science Letters, 22, 219–226.CrossRefGoogle Scholar
  77. Wasternack, C. (2006). Oxilipins: Biosynthesis, signal transduction and action. In P. Hedden & S. Thomas (Eds.), Plant hormone signaling. Annual plant reviews (pp. 185–228). Oxford: Blackwell Publishing Ltd.Google Scholar
  78. Zalewska, M., Lema-Ruminska, J., Miler, N., Gruszka, M., & Dąbal, W. (2011). Induction of adventitious shoot regeneration in Chrysanthemum as affected by the season. In Vitro Cellular & Developmental Biology Plant, 47, 375–378.CrossRefGoogle Scholar
  79. Zhang, L., Ding, R., Chai, Y., Bonfil, M., Moyano, E., Oksman-Caldentey, K., Xu, T., Pi, Y., Wang, Z., Zhang, H., Kai, G., Liao, Z., Sun, X., & Tang, K. (2004). Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proceedings of the National Academy of Sciences, 101, 17.Google Scholar
  80. Zhang, J. Y., Bae, T. W., Boo, K. H., Sun, H. J., Song, I., Pham, C.-H., Ganesan, M., Yang, D. H., Kang, G. H., Ko, S. M., Riu, K. Z., Lim, P. O., & Lee, H. Y. (2011). Ginsenoside production and morphological characterization of wild ginseng (Panax ginseng Meyer) mutant lines induced by g-irradiation (60Co) of adventitious roots. Journal of Ginseng Research, 35, 283–293.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhao, J. T., Davisb, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.CrossRefPubMedGoogle Scholar
  82. Zieg, R. G., Zito, S. W., & Staba, E. J. (1983). Selection of high pyrethrin producing tissue cultures. Planta Medica, 48, 88–91.CrossRefPubMedGoogle Scholar
  83. Zito, S. W., & Tio, C. D. Z. (1990). Constituents of Chrysanthemum cinerariaefolium in leaves, regenerated plantlets and callus. Phytochemistry, 29, 2533–2534.CrossRefGoogle Scholar
  84. Zito, S. W., Zieg, R. G., & Staba, E. J. (1983). Distribution of pyrethrins in oil glands and leaf tissue of Chrysanthemum cinerariaefolium. Planta Medica, 47, 205–207.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shamshad A. Khan
    • 1
  • Priyanka Verma
    • 1
  • Varsha A. Parasharami
    • 1
  • Laiq Ur Rahman
    • 2
  1. 1.Division of Biochemical SciencesCSIR-National Chemical LaboratoryPuneIndia
  2. 2.Plant Biotechnology DivisionCentral Institute of Medicinal and Aromatic Plants (CSIR-CIMAP)LucknowIndia

Personalised recommendations