Advertisement

Cryopreservation of Medicinal Herbs: Major Breakthroughs, Hurdles and Future

  • Suprabuddha Kundu
  • Umme Salma
  • Saikat Gantait
Chapter

Abstract

Throughout the advancement of human civilization, medicinal plants have contributed an immense role. The resources for traditional medicines and most of the modern medicines are obtained from medicinal plants. With the ever-increasing requirement for secondary metabolites, the medicinal plants are exploited all over the world, leading to the threat of their extinction. To combat the situation, there is an urgent need to establish a plan for their long-term conservation. Storage under in vitro cultures, though advantageous, is costly and susceptible to microbial contamination and somaclonal variation. The most competent and economical technique for long-term conservation is cryopreservation (in liquid nitrogen at −196 °C). Traditional techniques of cryopreservation were relied on freeze-induced dehydration and applied for conserving shoot apices and undifferentiated in vitro cultures of cold-tolerant medicinal plant species. However, ice crystal formation usually occurs inside the cell, which is detrimental to cellular structure integrity. As a result, vitrification-mediated new cryopreservation techniques were efficiently employed with all types of the explant. Besides, only small number of medicinal plants could be cryopreserved for their germplasm conservation, and continued efforts to establish cryopreservation protocols for a large array of medicinal plant species are needed. The objective of the present book chapter is to appraise the work carried out in the last one decade employing the diverse cryopreservation methods for the conservation of medicinal plants.

Keywords

Cryopreservation Desiccation Encapsulation Long-term conservation Medicinal plants Vitrification 

Notes

Acknowledgements

Authors acknowledge the e-library assistance from Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India. We further are thankful to the anonymous reviewers and the editor of this article for their critical comments and suggestions on the manuscript.

Conflict of Interest

Declared none.

References

  1. Ai, P. F., Lu, L. P., & Song, J. J. (2012). Cryopreservation of in vitro-grown shoot-tips of Rabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell, Tissue and Organ Culture, 108, 381–387.CrossRefGoogle Scholar
  2. Al-Baba, H., Shibli, R. A., Akash, M., Al-Qudah, T. S., Tahtamouni, R. W., & Al-Ruwaiei, H. (2015). Cryopreservation and genetic stability assessment of threatened medicinal plant (Ziziphora tenuior L.) grown wild in Jordan. Jordan Journal of Biological Sciences, 8, 247–256.CrossRefGoogle Scholar
  3. Bachiri, Y., Gazeau, C., Hansz, J., Morisset, C., & Dereuddre, J. (1995). Successful cryo-preservation of suspension cells by encapsulation-dehydration. Plant Cell, Tissue and Organ Culture, 43, 241–248.Google Scholar
  4. Bachiri, Y., Bajon, C., Sauvanet, A., Gazeau, C., & Morisset, C. (2000). Effect of osmotic stress on tolerance of air-drying and cryopreservation of Arabidopsis thaliana suspension cells. Protoplasma, 214, 227–243.CrossRefGoogle Scholar
  5. Baghdadi, S. H., Makhadmeh, I., Syouf, M., Arabiat, A., Shibli, R. A., & Shatnawai, M. A. (2011). Cryopreservation by vitrification of embryogenic callus of wild crocus (Crocus hyemalis and Crocus moabiticus). Acta Horticulturae, 908, 239–246.CrossRefGoogle Scholar
  6. Baker, D. D., Chu, M., Oza, U., & Rajgarhia, V. (2007). The value of natural products to future pharmaceutical discovery. Natural Product Reports, 24, 1225–1244.PubMedCrossRefGoogle Scholar
  7. Bartolo, M. E., & Carter, J. V. (1991). Effect of microtubule stabilization on the freezing tolerance of mesophyll cells of spinach. Plant Physiology, 97, 182–187.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benson, E. E. (1999). An introduction to plant conservation biotechnology. In E. E. Benson (Ed.), Plant conservation biotechnology (pp. 3–10). London: Taylor and Francis.Google Scholar
  9. Benson, E. E., & Bremner, D. (2004). Oxidative stress in the frozen plant: A free radical point of view. In B. J. Fuller, N. Lane, & E. E. Benson (Eds.), Life in the frozen state (pp. 205–241). Boca Raton: CRC Press.CrossRefGoogle Scholar
  10. Bentley, R. (Ed.). (2010). Medicinal plants (pp. 23–46). London: Domville-Fife Press.Google Scholar
  11. Bhowmik, S. S., Kumaria, S., & Tandon, P. (2011). Long-term conservation through cryopreservation of immature seed of Mantisia spathulata and Mantisia wengeri; two endangered plants of north-east India. CryoLetters, 32, 498–505.PubMedGoogle Scholar
  12. Bruňáková, K., Zámečník, J., Urbanová, M., & Čellárová, E. (2011). Dehydration status of ABA-treated and cold-acclimated Hypericum perforatum L. shoot tips subjected to cryopreservation. Thermochimica Acta, 525, 62–70.CrossRefGoogle Scholar
  13. Cho, E. G., Hor, Y. L., Kim, H. H., Rao, V. R., & Engelmann, F. (2002). Cryopreservation of Citrus madurensis embryonic axes encapsulation–dehydration. CryoLetters, 23, 325–332.PubMedGoogle Scholar
  14. Cole, I. B., Saxena, P. K., & Murch, S. J. (2007). Medicinal biotechnology in the genus Scutellaria. In Vitro Cellular & Developmental Biology - Plant, 43, 318–327.CrossRefGoogle Scholar
  15. Coste, A., Halmagyi, A., Butiuc-Keul, A. L., Deliu, C., Coldea, G., & Hurdu, B. (2012). In vitro propagation and cryopreservation of Romanian endemic and rare Hypericum species. Plant Cell, Tissue and Organ Culture, 110, 213–226.CrossRefGoogle Scholar
  16. Cripps, R. F. (2006). Effect of anti-oxidants and iron on the recovery of cryopreserved gametophytic tissue from fern Lepisorus longifolius. Cryobiology, 53, 367–446.Google Scholar
  17. Crowe, J. H., Carpenter, J. F., Crowe, L. M., & Anchordoguy, T. J. (1990). Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology, 27, 219–231.CrossRefGoogle Scholar
  18. Crowe, J. H., Crowe, L. M., & Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science, 223, 701–703.Google Scholar
  19. Crowe, J. H., Oliver, A. E., & Tablin, F. (2002). Is there a single biochemical adaptation to anhydrobiosis? Integrative and Comparative Biology, 42, 497–503.PubMedCrossRefGoogle Scholar
  20. da Silva Cordeiro, L., Simões-Gurgel, C., & Albarello, N. (2015a). Multiplication and cryopreservation of adventitious roots of Cleome rosea. In Vitro Cellular & Developmental Biology - Plant, 51, 249–257.CrossRefGoogle Scholar
  21. da Silva Cordeiro, L., Simões-Gurgel, C., Albarello, N., & Engelmann, F. (2015b). Cryopreservation of in vitro-grown shoot tips of Cleome rosea Vahl (Cleomaceae) using the V cryo-plate technique. In Vitro Cellular & Developmental Biology - Plant, 51, 688–695.CrossRefGoogle Scholar
  22. de Almeida Pettinelli, J., de Oliveira Soares, B., Cantelmo, L., de Oliveira Garcia, R., Mansur, E., Engelmann, F., & Gagliardi, R. F. (2017). Cryopreservation of somatic embryos from Petiveria alliacea L. by different techniques based on vitrification. In Vitro Cellular & Developmental Biology - Plant, 53, 339–345.CrossRefGoogle Scholar
  23. de Oliveira Prudente, D. E., Domiciano, D. E., Paiva, R., Nery, F. C., & Maximo, W. P. F. (2017). Cryopreservation and effect of lighting conditions and cytokinins on in vitro multiplication of Miconia ligustroides (DC.) Naudin. African Journal of Agricultural Research, 12, 502–511.CrossRefGoogle Scholar
  24. Engelmann, F. (1997). In vitro conservation methods. In C. A. Callow, B. V. Ford-Lloyd, & H. J. Newbury (Eds.), Biotechnology and plant genetic resources (pp. 119–161). Oxford: CAB International.Google Scholar
  25. Engelmann, F. (1998). In vitro conservation methods. In B. V. Ford-Lloyd, J. H. Newburry, & J. A. Callow (Eds.), Biotechnology and plant genetic resources: Conservation and use (pp. 119–162). Wellingford: CABI.Google Scholar
  26. Engelmann, F. (2000). Importance of cryopreservation for the conservation of plant genetic resources. In F. Engelmann & H. Takagi (Eds.), Cryopreservation of tropical plant germplasm—current research progress and applications (pp. 8–20). Rome/Tsukuba: IPGRI/JIRCAS.Google Scholar
  27. Engelmann, F. (2004). Plant cryopreservation: Progress and propects. In Vitro Cellular & Developmental Biology - Plant, 40, 427–433.CrossRefGoogle Scholar
  28. Engelmann, F. (2009). Encapsulation-dehydration: Past, present and future. Acta Horticulturae, 908, 165–171.Google Scholar
  29. Engelmann, F. (2014). Cryopreservation of clonal crops: A review of key parameters. Acta Horticulturae, 1039, 31–39.CrossRefGoogle Scholar
  30. Engelmann-Sylvestre, I., & Engelmann, F. (2015). Cryopreservation of in vitro-grown shoot tips of Clinopodium odorum using aluminium cryo-plates. In Vitro Cellular & Developmental Biology - Plant, 51, 185–191.CrossRefGoogle Scholar
  31. Fahy, G. N., MacFarlane, D. R., Angell, C. A., & Meryman, H. T. (1984). Vitrification as an approach to cryopreservation. Cryobiology, 21, 417–420.Google Scholar
  32. Fatima, S., Mujib, A., Nasim, S. A., & Siddiqui, Z. H. (2009). Cryopreservation of embryogenic cell suspensions of Catharanthus roseus L. (G) Don. Plant Cell, Tissue and Organ Culture, 98, 1–9.CrossRefGoogle Scholar
  33. Flachsland, E., Terada, G., Scocchi, A., Rey, H., Mroginski, L., & Engelmann, F. (2006). Cryopreservation of seeds and in vitro-cultured protocorms of Oncidium bifolium sims. (Orchidaceae) by encapsulation-dehydration. CryoLetters, 27, 235–242.PubMedGoogle Scholar
  34. Fujikawa, S., & Jitsuyama, Y. (2000). Ultrastructural aspects of freezing adaption of cells by vitrification. In F. Engelmann & H. Takagi (Eds.), Cryopreservation of tropical plant germplasm: Current research progress and applications (pp. 36–42). Rome: JIRCAS/IPGRI.Google Scholar
  35. Fuller, B. J. (2004). Cryoprotectants: The essential antifreezes to protect life in the frozen state. CryoLetters, 25, 375–388.PubMedGoogle Scholar
  36. Gallard, A., Panis, B., Chevalier, M., Dorion, N., & Grapin, A. (2006). Comparative study between encapsulation-dehydration and droplet-vitrification processes for the cryopreservation of pelargonium apices. Cryobiology, 53, 376–446.CrossRefGoogle Scholar
  37. Gallard, A., Mallet, R. R., Chevalier, M. M., & Grapin, A. (2011). Limited elimination of two viruses by cryotherapy of pelargonium apices related to virus distribution. CryoLetters, 32, 111–122.PubMedGoogle Scholar
  38. Gamez-Pastrana, R., Gonzalez-Arnao, M. T., Martinez-Ocampo, Y., & Engelmann, F. (2011). Thermal events in calcium alginate beads during encapsulation dehydration and encapsulation-vitrification protocols. Acta Horticulturae, 908, 47–54.CrossRefGoogle Scholar
  39. Gantait, S., & Kundu, S. (2017). Does synthetic seed storage at higher temperature reduce reserpine content of Rauvolfia serpentina (L.) Benth. ex Kurz.? Rendiconti Lincei Scienze Fisiche E Naturali, 28, 679–686.CrossRefGoogle Scholar
  40. Gantait, S., & Sinniah, U. R. (2012). Rapid micropropagation of monopodial orchid hybrid (Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl.) through direct induction of protocorm-like bodies from leaf segments. Plant Growth Regulation, 68, 129–140.CrossRefGoogle Scholar
  41. Gantait, S., Kundu, S., & Ali, M. N. (2015a). Influence of encapsulating agent and matrix levels on synseed production of Bacopa monnieri (L.) Pennell. Med Plants, 7, 182–187.Google Scholar
  42. Gantait, S., Kundu, S., Ali, N., & Sahu, N. C. (2015b). Synthetic seed production of medicinal plants: A review on influence of explants, encapsulation agent and matrix. Acta Physiologiae Plantarum, 37, 1–12.CrossRefGoogle Scholar
  43. Gantait, S., Sinniah, U. R., Suranthran, P., Palanyandy, S. R., & Subramaniam, S. (2015c). Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet-vitrification approach and assessment of genetic fidelity. Protoplasma, 252, 89–101.PubMedCrossRefGoogle Scholar
  44. Gantait, S., Kundu, S., Wani, S. H., & Das, P. K. (2016). Cryopreservation of forest tree seeds: A mini-review. Journal of Forest and Environmental Science, 32, 311–322.CrossRefGoogle Scholar
  45. Gantait, S., Kundu, S., Yeasmin, L., & Ali, M. N. (2017a). Impact of differential levels of sodium alginate, calcium chloride and basal media on germination frequency of genetically true artificial seeds of Rauvolfia serpentina (L.) Benth. ex Kurz. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 75–81.CrossRefGoogle Scholar
  46. Gantait, S., Vijayan, J., & Majee, A. (2017b). Artificial seed production of Tylophora indica (Burm. Fil.) Merrill for interim storing and swapping of Germplasm. Horticultural Plant Journal, 3, 41–46.CrossRefGoogle Scholar
  47. Gantait, S., Sinniah, U. R., Shukla, G., & Sahu, N. C. (2017c). Cryoconservation methods for extended storage of plant genetic resources. In A. A. Ansari, S. S. Gill, Z. K. Abbas, & M. Naeem (Eds.), Plant biodiversity: Monitoring, assessment and conservation (pp. 454–468). Wallingford: CAB International.Google Scholar
  48. Garcia, R. O., Pacheco, G., Vianna, M. G., & Mansur, E. (2011). In vitro conservation of Passiflora suberosa L.: Slow growth and cryopreservation. CryoLetters, 32, 377–388.PubMedGoogle Scholar
  49. Garliardi, R. F., Pacheco, G. P., Carneiro, L. A., Valls, J. F. M., Vieira, M. L. C., & Mansur, E. (2003). Cryopreservation of Arachis species by vitrification of in vitro-grown shoot apices and genetic stability of recovered plants. CryoLetters, 24, 103–110.Google Scholar
  50. Ghaffarzadeh-Namazi, L., Keller, E. J., Senula, A., & Babaeian, N. (2017). Investigations on various methods for cryopreservation of callus of the medicinal plant Satureja spicigera. Journal of Applied Research on Medicinal and Aromatic Plants, 5, 10–15.CrossRefGoogle Scholar
  51. Gogoi, K., Kumaria, S., & Tandon, P. (2013). Cryopreservation of Cymbidium eburneum Lindl. and C. hookerianum Rchb. f., two threatened and vulnerable orchids via encapsulation–dehydration. In Vitro Cellular & Developmental Biology - Plant, 49, 248–254.CrossRefGoogle Scholar
  52. Gomez-Galera, S., Pelacho, A. M., Gene, A., Capell, T., & Christou, P. (2007). The genetic manipulation of medicinal and aromatic plants. Plant Cell Reports, 26, 1689–1715.PubMedCrossRefGoogle Scholar
  53. Gonzalez-Arnao, M. T., Lazaro-Vallejo, C. E., Engelmann, F., Gamez-Pastrana, R., Martinez-Ocampo, Y. M., MC, P.-S., & Diaz-Ramos, C. (2009). Multiplication and cryopreservation of vanilla (Vanilla planifolia ‘Andrews’). In Vitro Cellular & Developmental Biology - Plant, 45, 574–582.CrossRefGoogle Scholar
  54. Goyal, P., Khanna, A., Chauhan, A., Chauhan, G., & Purshotam, K. (2008). In vitro evaluation of crude extracts of C. roseus for potential antibacterial activity. International Journal of Green Pharmacy, 176–181.Google Scholar
  55. Guo, B., Stiles, A. R., & Liu, C. Z. (2013). Low-temperature preincubation enhances survival and regeneration of cryopreserved Saussurea involucrata callus. In Vitro Cellular & Developmental Biology-Plant, 49, 320–325.Google Scholar
  56. Halmagyi, A., Fischer-Kluver, G., Mix-Wagner, G., & Schumacher, H. M. (2004). Cryopreservation of Chrysanthemum morifolium (Dendranthem agrandiflora Ramat.) using different approaches. Plant Cell Reports, 22, 371–375.PubMedCrossRefGoogle Scholar
  57. Hoekstra, F. A., Golovina, E. A., Tetteroo, F. A. A., & Wolkers, W. F. (2001). Induction of desiccation tolerance in plant somatic embryo: How exclusive is the protective role of sugars. Cryobiology, 43, 140–150.PubMedCrossRefGoogle Scholar
  58. Hong, S., & Yin, M. (2009). High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of rare and endangered plant Emmenopterys henryi Oliv. Plant Cell, Tissue and Organ Culture, 99, 217–226.Google Scholar
  59. Hong, S., Yin, M., Shao, X., Wang, A., & Xu, W. (2009). Cryopreservation of embryogenic callus of Dioscorea bulbifera by vitrification. CryoLetters, 30, 64–75.PubMedGoogle Scholar
  60. Hong, S., & Yin, M. (2012a). A simple and efficient protocol for cryopreservation of embryogenic calli of the medicinal plant Anemarrhena asphodeloides Bunge by vitrification. Plant Cell, Tissue and Organ Culture, 109, 287–296.Google Scholar
  61. Hong, S., & Yin, M. (2012b). High-efficiency encapsulation-vitrification protocols for cryopreservation of embryogenic calli of the oriental medicinal plant Anemarrhena asphodeloides Bunge. CryoLetters, 33, 190–200.Google Scholar
  62. Kartha, K., & Engelmann, F. (1994). Cryopreservation and germplasm storage. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 195–230). Dordrecht: Kluwer.Google Scholar
  63. Kaviani, B., Bernard, F., Shakeri, H., & Hadadchi, G. H. R. (2005). Effects of salicylic acid on enhancing the resistance of embryonic axes of Persian lilac (Meila azedarach L) against cold and cryopreservation. Agron Horticulture, 67, 44–49.Google Scholar
  64. Kaviani, B., Safari-Motlagh, M. R., Padasht-Dehkaei, M. N., Darabi, A. H., & Rafizadeh, A. (2008). Cryopreservation of lily [Lilium ledebourii (Baker) Bioss.] germplasm by encapsulation-dehydration. International Journal of Botany, 4, 491–493.CrossRefGoogle Scholar
  65. Kaviani, B., Dahkaei, M., Hashemabadi, D., & Darabi, A. (2010). Cryopreservation of Lilium ledebourii (Baker) Bioss. by encapsulation-vitrification and in vivo media for planting of germplasm. American-Eurasian Jorunal of Agriculture and Environmental Sciences, 8, 556–560.Google Scholar
  66. Kim, H. H., Lee, Y. G., Shin, D. J., Ko, H. C., Gwag, J. G., Cho, E. G., & Engelmann, F. (2009). Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters, 30, 320–334.PubMedGoogle Scholar
  67. Kim, H. H., Popova, E. V., Yi, J. Y., Cho, G. T., Park, S. U., Lee, S. C., & Engelmann, F. (2010). Cryopreservation of hairy roots of Rubia akane (Nakai) using a droplet-vitrification procedure. CryoLetters, 31, 473–484.PubMedGoogle Scholar
  68. Kim, H. H., Popova, E. V., Shin, D. J., Bae, C. H., Baek, H. J., Park, S. U., & Engelmann, F. (2012). Development of a droplet-vitrification protocol for cryopreservation of Rubia akane (Nakai) hairy roots using a systematic approach. CryoLetters, 33, 506–517.PubMedGoogle Scholar
  69. Kulus, D., & Zalewska, M. (2014). Cryopreservation as a tool used in long-term storage of ornamental species–a review. Scientia Horticulturae, 168, 88–107.CrossRefGoogle Scholar
  70. Lambert, E., Goossens, A., Panis, B., Van Labeke, M. C., & Geelen, D. (2009). Cryopreservation of hairy root cultures of Maesa lanceolata and Medicago truncatula. Plant Cell, Tissue and Organ Culture, 96, 289–296.CrossRefGoogle Scholar
  71. Larsen, H. O., & Olsen, C. S. (2007). Unsustainable collection and unfair trade? Uncovering and assessing assumptions regarding Central Himalayan medicinal plant conservation. Biodiversity and Conservation, 16, 1679–1697.CrossRefGoogle Scholar
  72. Lata, H., Chandra, S., Khan, I. A., & Elsohly, M. A. (2008). Propagation of Cannabis sativa L using synthetic seed technology. Planta Medica, 74, 328.CrossRefGoogle Scholar
  73. Leonard, E., Runguphan, W., O’Connor, S., & Prather, K. J. (2009). Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nature Chemical Biology, 5, 292–300.PubMedCrossRefGoogle Scholar
  74. Li, M., Zhao, X., Hong, S., Zhang, X., Li, P., Liu, J., & Xie, C. (2009). Cryopreservation of plantlet nodes of Dioscorea opposita Thunb. using a vitrification method. CryoLetters, 30, 19–28.PubMedGoogle Scholar
  75. Linsmaier, E. M., & Skoog, F. (1965). Organic growth factor requirements of tobacco tissue cultures. Physiologia Plantarum, 18, 100–127.CrossRefGoogle Scholar
  76. Lu, Z. W., Popova, E. V., Wu, C. H., Lee, E. J., Hahn, E. J., & Paek, K. Y. (2009). Cryopreservation of Ginkgo biloba cell culture: Effect of pretreatment with sucrose and ABA. CryoLetters, 30, 232–243.PubMedGoogle Scholar
  77. Mahajan, R., Sharma, K., Bandryal, S., Jamwal, P., & Billowria, P. (2013). In vitro propagation and cryopreservation of snow mountain garlic endemic to Himalayan region. International Journal of Advanced Biotechnology and Research, 4, 372–379.Google Scholar
  78. Maki, S., Hirai, Y., Niino, T., & Matsumoto, T. (2015). Assessment of molecular genetic stability between long-term cryopreserved and tissue cultured wasabi (Wasabia japonica) plants. CryoLetters, 36, 318–324.PubMedGoogle Scholar
  79. Mandal, B. B., & Ahuja-Ghosh, S. (2007). Regeneration of Dioscorea floribunda plants from cryopreserved encapsulated shoot tips: Effect of plant growth regulators. CryoLetters, 28, 329–336.PubMedGoogle Scholar
  80. Mandal, B. B., & Dixit-Sharma, S. (2007). Cryopreservation of in vitro shoot tips of Dioscorea deltoidea Wall., an endangered medicinal plant: Effect of cryogenic procedure and storage duration. CryoLetters, 28, 461–470.Google Scholar
  81. Mandal, B. B., Dixit-Sharma, S., & Srivastava, P. S. (2009). Cryopreservation of embryogenic cultures of Dioscorea bulbifera L. by encapsulation-dehydration. CryoLetters, 30, 440–448.PubMedGoogle Scholar
  82. Marco-Medina, A., Casas, J. L., Swennen, R., & Panis, B. (2010). Cryopreservation of Thymus moroderi by droplet vitrification. CryoLetters, 31, 14–23.PubMedGoogle Scholar
  83. Mazur, P. (1984). Freezing of living cells: Mechanisms and implications. The American Journal of Physiology, 247, 125–142.CrossRefGoogle Scholar
  84. Mazur, P. (2004). In B. Fuller, N. Lane, & E. E. Benson (Eds.), Life in the frozen state. Principles of cryobiology (pp. 65–67). London: CRC Press.Google Scholar
  85. Mikuła, A., Olas, M., Sliwinska, E., & Rybczyński, J. J. (2008). Cryopreservation by encapsulation of Gentiana spp. cell suspensions maintains regrowth, embryogenic competence and DNA content. CryoLetters, 29, 409–418.PubMedGoogle Scholar
  86. Moges, A. D., Shibli, R. A., & Karam, N. S. (2004). Cryopreservation of African Violet (Saintpaulia ionantha Wendl.) shoot tips. In Vitro Cellular & Developmental Biology - Plant, 40, 389–395.CrossRefGoogle Scholar
  87. Mohanty, P., Das, M. C., Kumaria, S., & Tandon, P. (2012). High-efficiency cryopreservation of the medicinal orchid Dendrobium nobile Lindl. Plant Cell, Tissue and Organ Culture, 109, 297–305.CrossRefGoogle Scholar
  88. Mohanty, P., Das, M. C., Kumaria, S., & Tandon, P. (2013). Cryopreservation of pharmaceutically important orchid Dendrobium chrysanthum Wall. ex Lindl. using vitrification based method. Acta Physiologiae Plantarum, 35, 1373–1379.CrossRefGoogle Scholar
  89. Mukherjee, P., Mandal, B. B., Bhat, K. V., & Biswas, A. K. (2009). Cryopreservation of Asian Dioscorea bulbifera L. and D. alata L. by vitrification: Importance of plant growth regulators. CryoLetters, 30, 100–111.PubMedGoogle Scholar
  90. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473–495.CrossRefGoogle Scholar
  91. Nair, D. S., & Reghunath, B. R. (2008). Effective use of encapsulation-dehydration technique in cryopreserving somatic embryos of butterfly pea (Clitoria ternatea L.). Journal of Herbs Spices & Medicinal Plants, 13, 83–95.CrossRefGoogle Scholar
  92. Nair, D. S., & Reghunath, B. R. (2009). Cryoconservation and regeneration of axillary shoot meristems of Indigofera tinctoria (L.) by encapsulation–dehydration technique. In Vitro Cellular & Developmental Biology - Plant, 45, 565.CrossRefGoogle Scholar
  93. Nalawade, S. M., Sagare, A. P., Lee, C. Y., Kao, C. L., & Tsay, H. S. (2003). Studies on tissue culture of Chinese medicinal plant resources in Taiwan and their sustainable utilization. Botanical Bulletin- Academia Sinica, 44, 79–98.Google Scholar
  94. Newman, D. J., & Crag, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70, 461–477.PubMedCrossRefGoogle Scholar
  95. Niino, T., Yamamoto, S., Fukui, K., Martinez, C., Roman, C., Arizag, M., Matsumoto, T., & Engelmann, F. (2013). Dehydration improves cryopreservation of Mat Rush (Juncus decipiens Nakai) basal stem buds on Cryo-plates. CryoLetters, 4, 549–560.Google Scholar
  96. Oh, S. Y., Wu, C. H., Popova, E., Hahn, E. J., & Paek, K. Y. (2009). Cryopreservation of Panax ginseng adventitious roots. Journal of Plant Biology, 52, 348–354.CrossRefGoogle Scholar
  97. Ozden-Tokatli, Y., Ozudogru, E. A., Gumusel, F., & Lambardi, M. (2007). Cryopreservation of Pistacia spp. seeds by dehydration and one-step freezing. CryoLetters, 28, 83–94.PubMedGoogle Scholar
  98. Ozden-Tokatli, Y., De Carlo, A., Gumusel, F., Pignattelli, S., & Lambardi, M. (2008). Development of encapsulation techniques for the production and conservation of synthetic seeds in ornamental plants. Propagation Ornam Plants, 8, 17–22.Google Scholar
  99. Palanyandy, S. R., Gantait, S., Suranthran, P., Sinniah, U. R., Subramaniam, S., Aziz, M. A., Sarifa, S. R. S. A., & Roowi, S. H. (2015). Storage of encapsulated oil palm polyembryoids: Influence of temperature and duration. In Vitro Cellular & Developmental Biology - Plant, 5, 118–124.CrossRefGoogle Scholar
  100. Popova, E. V., Lee, E. J., Wu, C. H., Hahn, E. J., & Paek, K. Y. (2009). A simple method for cryopreservation of Ginkgo biloba callus. Plant Cell, Tissue and Organ Culture, 97, 337–343.CrossRefGoogle Scholar
  101. Popova, E., Kim, H. H., & Paek, K. Y. (2010). Cryopreservation of coriander (Coriandrum sativum L.) somatic embryos using sucrose preculture and air desiccation. Scientia Horticulturae, 124, 522–528.CrossRefGoogle Scholar
  102. Prakash, P., & Gupta, N. (2005). Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A review. Indian Journal of Physiology and Pharmacology, 49, 125–131.PubMedGoogle Scholar
  103. Rabba’a, M. M., Shibli, R. A., & Shatnawi, M. A. (2012). Cryopreservation of Teucrium polium L. shoot-tips by vitrification and encapsulation-dehydration. Plant Cell, Tissue and Organ Culture, 110, 371–382.CrossRefGoogle Scholar
  104. Rafique, T., Shin-ichi, Y., Kuniak, F., Tanaka, D., Arizaga, M. V., Abbas, M., Matsumoto, T., & Niino, T. (2016). Cryopreservation of shoot-tips from different sugarcane varieties using d-cryoplate technique. Pakistan Journal of Agricultural Sciences, 53, 151–158.CrossRefGoogle Scholar
  105. Rao, S. R., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 101–153.PubMedCrossRefGoogle Scholar
  106. Ray, A., & Bhattacharya, S. (2008). Cryopreservation of in vitro grown nodal segments of Rauvolfia serpentina by PVS2 vitrification. CryoLetters, 29, 321–328.PubMedGoogle Scholar
  107. Reed, B. M., Schumacher, L., Dumet, D., & Benson, E. E. (2005). Evaluation of a modified encapsulation-dehydration procedure incorporating sucrose pretreatments for the cryopreservation of Ribes germplasm. In Vitro Cellular & Developmental Biology - Plant, 41, 431–436.CrossRefGoogle Scholar
  108. Ross, I. A. (2005). Medicinal plants of the world (volume 3): Chemical constituents, traditional and modern medicinal uses (pp. 110–132). New Jersey: Humana Press Inc.Google Scholar
  109. Rungjindamai, C., Thammasiri, K., Chuenboonngarm, N., & Jenjittikul, T. (2010). Cryopreservation of Alpinia nigra (Gaertn.) Burtt by vitrification-based technique. Thai Journal of Botany, 2, 151–154.Google Scholar
  110. Sakai, A. (2000). Development of cryopreservation techniques. In F. Engelmann & H. Takagi (Eds.), Cryopreservation of tropical plant germplasm: Current research progress and applications (pp. 1–7). Rome: JIRCAS/IPGRI.Google Scholar
  111. Sakai, A., & Engelmann, F. (2007). Vitrification, encapsulation-vitrification and droplet vitrification: A review. CryoLetters, 28, 151–172.PubMedGoogle Scholar
  112. Salma, M., Engelmann-Sylvestre, I., Collin, M., Escoute, J., Lartaud, M., Yi, J. Y., Kim, H. H., Verdeil, J. L., & Engelmann, F. (2014a). Effect of the successive steps of a cryopreservation protocol on the structural integrity of Rubia akane Nakai hairy roots. Protoplasma, 251, 649–659.Google Scholar
  113. Salma, M., Fki, L., Engelmann-Sylvestre, I., Niino, T., & Engelmann, F. (2014b). Comparison of droplet-vitrification and D-cryoplate for cryopreservation of date palm (Phoenix dactylifera L.) polyembryogenic masses. Scientia Horticulturae, 179, 91–97.CrossRefGoogle Scholar
  114. Samygin, G. A. (1974). Causes of frost-killing in plants. Moscow: Nauka (In Russian).Google Scholar
  115. Samygin, G. A. (1994). The process responsible for plant cell damage by extracellular ice. Russian Journal of Plant Physiology, 131, 215–223.Google Scholar
  116. Sant, R., Panis, B., Taylor, M., & Tyagi, A. (2008). Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell, Tissue and Organ Culture, 92, 107–111.CrossRefGoogle Scholar
  117. Schenk, R. U., & Hildebrandt, A. C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50, 199–204.CrossRefGoogle Scholar
  118. Seo, M. J., Shin, J. H., & Sohn, J. K. (2007). Cryopreservation of dormant herbaceous peony (Paeonia lactiflora Pall.) shoot-tips by desiccation. CryoLetters, 28, 207–213.PubMedGoogle Scholar
  119. Serrano-Martínez, F., & Casas, J. L. (2011). Cryopreservation of Tetraclinis articulata (Vahl.) masters. CryoLetters, 32, 248–255.PubMedGoogle Scholar
  120. Sharaf, S. A., Shibli, R. A., Kasrawi, M. A., & Baghdadi, S. H. (2012). Cryopreservation of wild Shih (Artemisia herba-alba Asso.) shoot-tips by encapsulation-dehydration and encapsulation-vitrification. Plant Cell, Tissue and Organ Culture, 108, 437–444.CrossRefGoogle Scholar
  121. Sharma, N., Singh, R., Pandey, R., & Kaushik, N. (2017). Genetic and biochemical stability assessment of plants regenerated from cryopreserved shoot tips of a commercially valuable medicinal herb Bacopa monnieri (L.) Wettst. In Vitro Cellular & Developmental Biology - Plant, 53, 346–351.CrossRefGoogle Scholar
  122. Shatnawi, M. A. (2011). Multiplication and cryogenic storage of Artemisia herba-alba: A medicinal plant. Food Agriculture and Environment, 9, 340–344.Google Scholar
  123. Shatnawi, M. (2013). Multiplication and cryopreservation of yarrow (Achillea millefolium L., Asteraceae). Journal of Agricultural Science and Technology, 15, 163–173.Google Scholar
  124. Shatnawi, M. A., Shibli, R. A., Abu-Romman, S. M., Al-Mazra’awi, M. S., Al Ajlouni, Z. I., Shatanawi, W. A., & Odeh, W. H. (2011). Clonal propagation and cryogenic storage of the medicinal plant Stevia rebaudiana. Spanish Journal of Agricultural Research, 9, 213–220.CrossRefGoogle Scholar
  125. Shin, D. J., Kong, H., Popova, E. V., Moon, H. K., Park, S. Y., Park, S. U., & Kim, H. H. (2012). Cryopreservation of Kalopanax septemlobus embryogenic callus using vitrification and droplet-vitrification. CryoLetters, 33, 402–410.PubMedGoogle Scholar
  126. Silva, L. C., Paiva, R., Swennen, R., Andrè, E., & Panis, B. (2013). Shoot-tip cryopreservation by droplet vitrification of Byrsonima intermedia A. Juss: A woody tropical and medicinal plant species from Brazilian cerrado. CryoLetters, 34, 338–348.PubMedGoogle Scholar
  127. Sinniah, U. R., & Gantait, S. (2013). Cryopreservation of immature Parkia speciosa Hassk. zygotic embryonic axes following desiccation or exposure to vitrification solution. Acta Physiologiae Plantarum, 35, 2629–2634.CrossRefGoogle Scholar
  128. Sinniah, U. R., Gantait, S., & Suranthran, P. (2014). Cryopreservation technology for conservation of selected vegetative propagules. Journal of Crop and Weed, 10, 10–13.Google Scholar
  129. Skyba, M., Urbanová, M., Kapchina-Toteva, V., Košuth, J., Harding, K., & Čellárová, E. (2010). Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. CryoLetters, 31, 249–260.PubMedGoogle Scholar
  130. Sopalun, K., Kanchit, K., & Ishikawa, K. (2010). Vitrification-based cryopreservation of Grammatophyllum speciosum protocorm. CryoLetters, 31, 347–357.PubMedGoogle Scholar
  131. Suranthran, P., Gantait, S., Sinniah, U. R., Subramaniam, S., Sarifa, S. R. S. A., & Roowi, S. H. (2012). Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regulation, 66, 101–109.CrossRefGoogle Scholar
  132. Touchell, D. H. (2000). Conservation of threatened flora by cryopreservation of shoot apices. In F. Engelmann & H. Takagi (Eds.), Cryopreservation of tropical plant germplasm: Current research progress and application (pp. 269–272). Rome: JIRCAS/IPGRI.Google Scholar
  133. Touchell, D., Turner, S. R., Senaratna, T., Bunn, E., & Dixon, K. W. (2002). Cryopreservation of Australian species—The role of plant growth regulators. In L. E. Towill & Y. P. S. Bajaj (Eds.), Cryopreservation of plant germplasm II (Vol. 50, pp. 373–390). Berlin: Springer.CrossRefGoogle Scholar
  134. Uchendu, E. E., Brown, D. C. W., & Saxena, P. K. (2011). Cryopreservation of shoot tips and cotyledons of the North American Ginseng (Panax quinquefolius L.). CryoLetters, 32, 463–472.PubMedGoogle Scholar
  135. Uemura, M., & Steponkus, P. L. (1999). Cold acclimation in plants: Relationship between the lipid composition and the cryostability of the plasma membrane. Journal of Plant Research, 112, 245–254.CrossRefGoogle Scholar
  136. Uprety, Y., Asselin, H., Dhakal, A., & Julien, N. (2012). Traditional use of medicinal plants in the boreal forest of Canada: Review and perspectives. Journal of Ethnobiology and Ethnomedicine, 8, 1–14.CrossRefGoogle Scholar
  137. Vendrame, W. A., & Faria, R. T. (2011). Phloroglucinol enhances recovery and survival of cryopreserved Dendrobium nobile protocorms. Scientia Horticulturae, 128, 131–135.CrossRefGoogle Scholar
  138. Vishwakarma, A. P., Vishwe, A., Sahu, P., & Chaurasiya, A. (2013). Magical remedies of Terminalia arjuna (Roxb.). International Journal of Pharmaceutics, 2, 189–201.Google Scholar
  139. WHO. (1993). Research guidelines for evaluating the safety and efficacy of herbal medicines. Manila: World Health Organization/Regional Office for the Western Pacific.Google Scholar
  140. Xue, S. H., Luo, X. J., Wu, Z. H., Zhang, H. L., & Wang, X. Y. (2008). Cold storage and cryopreservation of hairy root cultures of medicinal plant Eruca sativa Mill., Astragalus membranaceus and Gentiana macrophylla Pall. Plant Cell, Tissue and Organ Culture, 92, 251–260.CrossRefGoogle Scholar
  141. YaJun, L., LiPing, G., Tao, X., & KeJun, G. (2009). Study on cryopreservation of suspension culture cells by vitrification in Camellia sinensis. Journal of Tea Science, 29, 120–126.Google Scholar
  142. Yamamoto, S., Fukui, K., & Niino, T. (2011). A new cryopreservation method for vegetatively propagated plant genetic resources using aluminum cryo-plates. Development of Technologies, 10, 10–11.Google Scholar
  143. Yamamoto, S., Fukui, K., Rafique, T., Khan, N. I., Martinez, C. R., Sekizawa, K., Matsumoto, T., & Niino, T. (2012a). Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminum cryo-plates. Plant Genetic Resources, 10, 14–19.CrossRefGoogle Scholar
  144. Yamamoto, S. I., Rafique, T., Fukui, K., Sekizawa, K., & Niino, T. (2012b). V-cryo-plate procedure as an effective protocol for cryobanks: Case study of mint cryopreservation. CryoLetters, 33, 12–23.PubMedGoogle Scholar
  145. Yin, M., & Hong, S. (2009). Cryopreservation of Dendrobium candidum Wall. ex Lindl. protocorm-like bodies by encapsulation-vitrification. Plant Cell, Tissue and Organ Culture, 98, 179–185.CrossRefGoogle Scholar
  146. Yin, M., & Hong, S. (2010). A simple cryopreservation protocol of Dioscorea bulbifera L. embryogenic calli by encapsulation-vitrification. Plant Cell, Tissue and Organ Culture, 101, 349–358.Google Scholar
  147. Yin, L. L., Poobathy, R., James, J., Julkifle, A. L., & Subramaniam, S. (2011). Preliminary investigation of cryopreservation by encapsulation-dehydration technique on Brassidium shooting star orchid hybrid. African Journal of Biotechnology, 10, 4665–4672.CrossRefGoogle Scholar
  148. Zhang, J. M., Huang, B., Lu, X. X., Volk, G. M., Xin, X., Yin, G. K., He, J. J., & Chen, X. L. (2015). Cryopreservation of in vitro-grown shoot tips of Chinese medicinal plant Atractylodes macrocephala Koidz. using a droplet-vitrification method. CryoLetters, 36, 195–204.PubMedGoogle Scholar
  149. Zhao, Y., Qi, L. W., Wang, W. M., Saxena, P. K., & Liu, C. Z. (2011). Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. Journal of Pineal Research, 50, 83–88.PubMedCrossRefGoogle Scholar
  150. Zhao, X., Li, P., Jiang, L., Zhu, Y., Song, Z., Han, L., & Li, M. (2016). Effects of preculture on cryopreservation of nodes from Dioscorea opposita Thunb. cv. Tiegun plantlets by encapsulation-vitrification. Med Plant, 7, 22–26.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Suprabuddha Kundu
    • 1
  • Umme Salma
    • 1
  • Saikat Gantait
    • 2
    • 3
  1. 1.Department of Agricultural Biotechnology, Faculty of AgricultureBidhan Chandra Krishi ViswavidyalayaMohanpur, NadiaIndia
  2. 2.All India Coordinated Research Project on Groundnut, Directorate of ResearchBidhan Chandra Krishi ViswavidyalayaKalyani, NadiaIndia
  3. 3.Department of Genetics and Plant Breeding, Faculty of AgricultureBidhan Chandra Krishi ViswavidyalayaMohanpur, NadiaIndia

Personalised recommendations