Advertisement

Production of the Anticancer Compound Camptothecin in Root and Hairy Root Cultures of Ophiorrhiza mungos L.

  • B. Wetterauer
  • E. Wildi
  • M. WinkEmail author
Chapter

Abstract

Camptothecin (CPT), a modified monoterpene indole alkaloid, is a well-known antineoplastic agent. A comparison of 25 different transformed root culture lines of Ophiorrhiza mungos (hairy roots transformed by Agrobacterium rhizogenes), which produce CPT, showed a total CPT content of 890–3200 μg/g dry weight. Untransformed root cultures of O. mungos accumulated approx. 2000 μg CPT/g root tissue, or 2500 μg CPT of DW in total, respectively. Both transformed and untransformed root organ cultures of O. mungos showed high yields of CPT and therefore represent an interesting system for the feasible and sustainable bioproduction of CPT as raw material for the pharmaceutical industry. CPT production in other systems will be reviewed and compared. In the present study, comprehensive comparative kinetics of transformed and untransformed root organ cultures of O. mungos in relation to culture conditions, growth parameters, nutrient utilization, and CPT formations were determined. The absolute CPT content showed a positive correlation with growth; thus a constitutive CPT biosynthesis is assumed. CPT was released to the culture medium to a substantial degree. Media CPT content seemed to be actively regulated by the roots themselves, at least in the untransformed line, and exhibited a specific level for each line. The influence of the nitrogen source in relation to growth and CPT biosynthesis was investigated. Ammonium was preferred as a nitrogen source, but nitrate seemed to be beneficial and essential for pH value regulation and consequently for root growth and CPT biosynthesis.

Keywords

Camptothecin Ophiorrhiza mungos Root organ culture Kinetics Nutrition CPT production 

Abbreviations

CPT

Camptothecin

DW

Dry weight

FW

Fresh weight

rpm

Revolutions per minute

Notes

Acknowledgements

This research was conducted in cooperation with ROOTec GmbH and supported by a grant from the German Federal Ministry of Education and Research (BMBF, 0312739). We thank Dr. P. Ripplinger (CEO, ROOTec GmbH) for his generous support.

References

  1. Adamovics, J. A., Cina, J. A., & Hutchinson, C. R. (1979). Minor alkaloids of Camptotheca acuminata. Phytochemistry, 18, 1085–1086.CrossRefGoogle Scholar
  2. Aimi, N., Tsuyuki, T., Murakami, H., Sakai, S. I., & Haginiwa, J. (1985). Structure of ophiorines A and B; novel type gluco indole alkaloids isolated from Ophiorrhiza ssp. Tetrahedron Letters, 26, 5299–5302.CrossRefGoogle Scholar
  3. Aimi, N., Hoshino, H., Nishimura, M., Sakai, S. I., & Haginiwa, J. (1990). Chaboside, first natural glycocamptothecin found from Ophiorrhiza pumila. Tetrahedron Letters, 31, 5169–5172.CrossRefGoogle Scholar
  4. Aiyama, R., Nagai, H., Nokata, K., Shinohara, C., & Sawada, S. (1988). A camptothecin derivative from Nothapodytes foetida. Phytochemistry, 27, 3663–3664.CrossRefGoogle Scholar
  5. Amna, T., Puri, S. C., Verma, V., Sharma, J. P., Khajuria, R. K., Musarrat, J., Spiteller, M., & Qazi, G. N. (2006a). Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Canadian Journal of Microbiology, 52, 189–196.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Amna, T., Khajuria, R. K., Puri, S. C., Verma, V., & Qazi, G. N. (2006b). Determination and qualification of camptothecin in an endophytic fungus by liquid chromatography – Positive mode electrospray ionization tandem mass spectrometry. Current Science, 91, 208–212.Google Scholar
  7. Amna, T., Amina, M., Sharma, P. R., Puri, S. C., Al-Youssef, H. M., Al-Taweet, A. M., & Qazi, G. N. (2012). Effect of precursors feeding and media manipulation on production of novel anticancer pro-drug camptothecin from endophytic fungus. Brazilian Journal of Microbiology, 43, 1476–1489.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arbain, D., Lajis, N. H., Putra, D. P., Sargent, M. V., Skelton, B. W., & White, A. H. (1993a). The alkaloids of Ophiorrhiza cf. ferruginea. Australian Journal of Chemistry, 46, 969–976.CrossRefGoogle Scholar
  9. Arbain, D., Putra, D. P., & Sargent, M. V. (1993b). The alkaloids of Ophiorrhiza filistipula. Australian Journal of Chemistry, 46, 977–985.CrossRefGoogle Scholar
  10. Arisawa, M., Gunasekera, S. P., Cordell, G. A., & Farnsworth, N. R. (1981). Plant anticancer agents XXI. Constituents of Merrilliodendron megacarpum. Planta Medica, 43, 404–415.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Asano, T., Watase, I., Sudo, H., Kitajima, M., Takayama, H., Aimi, N., Yamazaki, M., & Saito, K. (2004). Camptothecin production by in vitro cultures of Ophiorrhiza liukiuensis and O. kuroiwai. Plant Biotechnology, 21, 275–281.CrossRefGoogle Scholar
  12. Asano, T., Sudo, H., Kitajima, M., Yamazaki, M., & Saito, K. (2009). Chapter 27: Camptothecin production by in vitro cultures and plant regeneration in Ophiorrhiza species. In S. M. Jain & P. K. Saxena (Eds.), Methods in molecular biology: Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants (Vol. 547, pp. 337–345). Totowa: Humana Press.Google Scholar
  13. Bastian, P., Bauer, J., Chavarría-Krauser, A., Engwer, C., Jäger, W., Marnach, S., Ptashnyk, M., & Wetterauer, B. (2008). Modelling and simulation of hairy root growth. In H.-J. Krebs & W. Jäger (Eds.), Mathematics – Key technology for the future (pp. 101–115). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  14. Botanical Nomenclature data base of the Botanical Gardens of Missouri. (2017). http://www.tropicos.org. Assessed 11 Oct 2017.
  15. Bremekamp, C. E. B. (1966). Remarks on the position, the delimitation, and the subdivision of the Rubiaceae. Acta Botanica Neerlandica, 15, 1–33.CrossRefGoogle Scholar
  16. Cao, G. R., Gao, J. X., Duan, D. X., Li, S. J., & Wang, K. (1992). Studies on Camptotheca acuminata leaves: Main toxic principle, poisoning, and treatment in goats. In J. F. Lynn (Ed.), Poisonous plants proceedings of the third international symposium (1st ed., pp. 506–508). Ames: Iowa State University Press.Google Scholar
  17. Chan, H.-H., Li, C.-Y., Damu, A. G., & Wu, T.-S. (2005). Anthraquinones from Ophiorrhiza hayatana OHWI. Chemical & Pharmaceutical Bulletin, 53, 1232–1235.CrossRefGoogle Scholar
  18. Ciddi, V., & Shuler, M. L. (2000). Camptothecin from callus cultures of Nothapodytes foetida. Biotechnology Letters, 22, 129–132.CrossRefGoogle Scholar
  19. Cui, L., Ni, X., Ji, Q., Teng, X., Yang, Y., Wu, C., Zekria, D., Zhang, D., & Kai, G. (2015). Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Scientific Reports, 5, 8227.  https://doi.org/10.1038/srep08227.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dai, J. R., Hallock, Y. F., Cardellina, J. H., II, & Boyd, M. R. (1999). 20-O-β-glucopyranosyl camptothecin from Mostuea brunonis: A potential camptothecin pro-drug with improved solubility. Journal of Natural Products, 62, 1427–1429.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Darwin, S. P. (1976). The pacific species of Ophiorrhiza Rubiaceae. Lyonia, 1, 47–102.Google Scholar
  22. Das, B., & Madhusudhan, P. (1999). Enantioselective synthesis of (S)- and (R)-mappicines and their analogues. Tetrahedron, 55, 7875–7880.CrossRefGoogle Scholar
  23. Deepthi, S., & Satheeshkumar, K. (2016). Enhanced camptothecin production induced by elicitors in the cell suspension culture of Ophiorrhiza mungos Linn. Plant Cell, Tissue and Organ Culture, 124, 483–493.CrossRefGoogle Scholar
  24. Deepthi, S., & Satheeshkumar, K. (2017a). Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L. Applied Microbiology and Biotechnology, 101, 545–558.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Deepthi, S., & Satheeshkumar, K. (2017b). Effects of major nutrients, growth regulators and inoculums size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L. Biochemical Engineering Journal, 117, 198–209.CrossRefGoogle Scholar
  26. Ding, X., Liu, K., Deng, B., Chen, W., Li, W., & Liu, F. (2013). Isolation and characterization of endophytic fungi from Camptotheca acuminata. World Journal of Microbiology and Biotechnology, 29, 1831–1838.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Flores, H. E., Hoy, M. W., & Pickard, J. J. (1987). Reviews: Secondary metabolites from root cultures. TIBTECH, 5, 64–69.CrossRefGoogle Scholar
  28. Fulzele, D. P., & Satdive, R. K. (2003). Somatic embryogenesis, plant regeneration and the evaluation of camptothecin content in Nothapodytes foetida. In Vitro Cellular & Developmental Biology - Plant, 39, 212–216.CrossRefGoogle Scholar
  29. Fulzele, D. P., Satdive, R. K., & Pol, B. B. (2001). Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Medica, 67, 150–152.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fulzele, D. P., Satdive, R. K., & Pol, B. B. (2002). Untransformed root cultures of Nothapodytes foetida and production of camptothecin. Plant Cell, Tissue and Organ Culture, 69, 285–288.CrossRefGoogle Scholar
  31. Fulzele, D. P., Satdive, R., Kamble, S., Singh, S., & Singh, S. (2015). Improvement of anticancer drug camptothecin production by gamma irradiation on callus cultures of Nothapodytes foetida. International Journal of Pharmaceutical Research and Allied Sciences, 4, 19–27.Google Scholar
  32. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirement of suspensions cultures of soybean root cells. Experimental Cell Research, 50, 151–158.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gharpure, G., Chavan, B., Lele, U., Hastak, A., Bhave, A., Malpure, N., Vasudeva, R., & Patwardhan, A. (2010). Camptothecin accumulation in Ophiorrhiza rugosa var. prostrate from northern Western Ghats. Current Science, 98, 302–304.Google Scholar
  34. Gopalakrishnan, R., & Shankar, B. (2014). Multiple shoot cultures of Ophiorrhiza rugosa var. decumbens Deb and mondal – A viable renewable source for the continuous production of bioactive Camptotheca alkaloids apart from stems of the parent plant of Nothapodytes foetida (Wight) Sleumer. Phytomedicine, 21, 383–389.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Govindachari, T. R., & Viswanathan, N. (1972a). 9-methoxycamptothecin. A new Alkaloid from Mappia foetida Miers. Contribution from CIBA Research Centre 228:453.Google Scholar
  36. Govindachari, T. R., & Viswanathan, N. (1972b). Alkaloids of Mappia foetida. Phytochemistry, 11, 3529–3531.CrossRefGoogle Scholar
  37. Gunasekera, S. P., Badawi, M. M., Cordell, G. A., Farnsworth, N. R., & Chitnis, M. (1979). Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. Journal of Natural Products, 42, 475–477.PubMedCrossRefGoogle Scholar
  38. Gurudatt, P. S., Priti, V., Shweta, S., Ramesha, B. T., Ravikanth, G., Vasudeva, R., Amna, T., Deepika, S., Ganeshaiah, K. N., & Shaanker, R. U. (2010). Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Current Science, 98, 1006–1010.Google Scholar
  39. Hamzah, A. S., Arbain, D., Mahyudin, S. M. V., & Lajis, N. H. (1994). The alkaloids of Ophiorrhiza communis and O. tomentosa. Pertanika Journal of Science & Technology, 2, 33–38.Google Scholar
  40. Hsu, J. S., Chao T. Y., Lin L. T., et al. (1977). Chemical constituents of the anticancer plant Camptotheca acuminata Decne. II. Chemical constituents of the fruits of Camptotheca acuminata Decne. Huaxue Xuebao, 35, 193–200.Google Scholar
  41. Hu, Y., Yu, W., Song, L., Du, X. H., Ma, X., Liu, Y., Wu, J., & Ying, Y. (2016). Effects of light on production of camptothecin and expression of key enzyme genes in seedlings of Camptotheca acuminata Decne. Acta Physiologiae Plantarum.  https://doi.org/10.1007/s11738-016-2084-z.
  42. Isah, T. (2017). Production of camptothecin in the elicited callus cultures of Nothapodytes nimmoniana (J. Graham) Mabberly. Chemical Papers, 71, 1091–1106.CrossRefGoogle Scholar
  43. Isah, T., & Mujib, A. (2015a). In vitro propagation and camptothecin production in Notapodytes nimmoniana. Plant Cell, Tissue and Organ Culture, 121, 1–10.CrossRefGoogle Scholar
  44. Isah, T., & Mujib, A. (2015b). Camptothecin from Nothapodytes nimmoniana: Review on biotechnology applications. Acta Physiologiae Plantarum.  https://doi.org/10.1007/s11738-015-1854-3.
  45. Jain, S. K., Meena, S., Gupta, A. P., Kushwaha, M., Shaanker, R. U., Jaglan, S., Bharate, S. B., & Vishwakarma, R. A. (2014). Dysoxylum binectariferum bark as a new source of anticancer drug camptothecin: Bioactivity-guided isolation and LCMS-based quantification. Bioorganic & Medicinal Chemistry Letters, 24, 3146–3149.CrossRefGoogle Scholar
  46. Kai, G., Teng, X., Cui, L., Li, S., Hao, X., Shi, M., & Yan, B. (2014). Effect of three plant hormone elicitors on the Camptothecin accumulation and gene transcript profiling in Camptotheca acuminata seedlings. International Journal of Science, 3, 86–95.Google Scholar
  47. Kai, G., Wu, C., Gen, L., Zhang, L., Cui, L., & Ni, X. (2015). Biosynthesis and biotechnological production of anti-cancer drug camptothecin. Phytochemistry Reviews, 14, 525–539.CrossRefGoogle Scholar
  48. Kamble, S., Gopalakrishnan, R., & Eapen, S. (2011). Short communication: Production of camptothecin by hairy roots and regenerated transformed shoots of Ophiorrhiza rugosa var. decumbens. Natural Product Research, 25, 1762–1765.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Karwasara, V. S., & Dixit, V. K. (2013). Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnology Reports, 7, 357–369.CrossRefGoogle Scholar
  50. Kavitha P, Vasantha Kumar T, Rajasekharan PE, Abdul VK, Kareem V‚ Rao K (2010) Camptothecin and 9-methoxy camptothecin, anti-cancer alkaloids in Nothapodytes nimmoniana from Western Ghats, India. JMAPS 32:129–132.Google Scholar
  51. Kedari, P., & Malpathak, N. P. (2014). Hairy root cultures of Chonemorpha fragrans (Moon) Alston.: A potential plant for camptothecin production. Indian Journal of Biotechnology, 13, 231–235.Google Scholar
  52. Kitajima, M. (2007). Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza. Journal of Natural Medicines, 61, 14–23.CrossRefGoogle Scholar
  53. Kitajima, M., Nakamura, M., Takayama, H., Saito, K., Stöckigt, J., & Aimi, N. (1997). Constituents of regenerated plants of Ophiorrhiza pumila; formation of a new glycocamptothecin and predominant formation of (3R)-deoxypumiloside over (3S)-congener. Tetrahedron Letters, 38, 8997–9000.CrossRefGoogle Scholar
  54. Kitajima, M., Fischer, U., Nakamura, M., Ohsawa, M., Ueno, M., Takayama, H., Unger, M., Stöckigt, J., & Aimi, N. (1998a). Anthraquinones from Ophiorrhiza pumila tissue and cell cultures. Phytochemistry, 48, 107–111.CrossRefGoogle Scholar
  55. Kitajima, M., Nakamura, M., Watanabe, A., Takayama, H., & Aimi, N. (1998b). Synthesis and absolute configuration of 9-β-D-glucosyloxycamptothecin, a new gluco camptothecin isolated from Ophiorrhiza pumila regenerated plants. Journal of the Chemical Society, Perkin Transactions, 1, 389–390.CrossRefGoogle Scholar
  56. Kitajima, M., Yoshida, S., Yamagata, K., Nakamura, M., Takayama, H., Saito, K. H., Seki, H., & Norio, A. (2002). Camptothecin-related alkaloids from hairy roots of Ophiorrhiza pumila. Tetrahedron, 58, 9169–9178.CrossRefGoogle Scholar
  57. Kitajima, M., Fujii, N., Yoshino, F., Sudo, H., Saito, K., Aimi, N., & Takayama, H. (2005). Camptothecins and two new monoterpene glucosides from Ophiorrhiza liukiuensis. Chemical & Pharmaceutical Bulletin, 53, 1355–1358.CrossRefGoogle Scholar
  58. Kulkarni, A. V., Patwandhan, A. A., Lele, U., & Malpathak, N. P. (2010). Production of camptothecin in cultures of Chonemorpha grandiflora. Pharmacognosy Research, 2, 296–299.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kusari, S., Zühlke, S., & Spiteller, M. (2009). An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. Journal of Natural Products, 72, 2–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lalaleo, L., Khojasteh, A., Fattahi, M., Bonfill, M., Cusido, R. M., & Palazon, J. (2016). Plant anti-cancer agent and their biotechnological production in plant cell biofactories. Current Medicinal Chemistry, 23, 4418–4441.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Li, S., & Adair, K. T. (1994). XI SHU, a promising anti-tumor and anti-viral tree for the twenty-first century. A Henry M. Rockwell Monograph. The Tucker Center/College of Forestry/Stephen F Austin State University, Nacogdoches/Texas.Google Scholar
  62. Li, Z., & Liu, Z. (2005). Camptothecin production in Camptotheca acuminata cultured hydroponically and with nitrogen enrichments. Canadian Journal of Plant Science, 85, 447–452.CrossRefGoogle Scholar
  63. Li, S., Yi, Y., Wang, Y., Zhang, Z., & Beasley, R. S. (2002). Camptothecin accumulation and variations in Camptotheca. Planta Medica, 68, 1010–1016.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Liu, Z. (2000). Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata seedlings. Physiologia Plantarum, 110, 483–488.Google Scholar
  65. Liu, Z., & Adams, J. (1996). Camptothecin yield and distribution within Camptotheca acuminata trees cultivated in Louisiana. Canadian Journal of Botany, 74, 360–365.CrossRefGoogle Scholar
  66. Liu, Z., & Adams, J. C. (1998). Seed source variation in camptothecin concentrations of nursery-grown Camptotheca acuminata seedlings. New Forest, 16, 167–175.CrossRefGoogle Scholar
  67. Liu, W., & Reinscheid, U. M. (2004). Camptothecin-resistant fungal endophytes of Camptotheca acuminata. Mycological Progress, 3, 189–192.CrossRefGoogle Scholar
  68. Liu, Z., Carpenter, S. B., Bourgeois, W. J., Yu, Y., Constantin, R. J., Falcon, M. J., & Adams, J. C. (1998). Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata. Tree Physiology, 18, 265–270.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Liu, Z., Adams, J. C., Viator, H. P., Constantin, R. J., & Carpenter, S. B. (1999). Influence of soil fertilization, plant spacing and coppicing on growth, stomatal conductance, abscisic acid and camptothecin levels in Camptotheca acuminata seedlings. Physiologia Plantarum, 105, 402–408.CrossRefGoogle Scholar
  70. Liu, K., Ding, X., Deng, B., & Chen, W. (2010). 10-hxdroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnology Letters, 32, 689–693.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Liu, Y., Song, L., Yu, W., Hu, Y., Ma, X., Wu, J., & Ying, Y. (2015). Light quality modifies camptothecin production and gene expression of biosynthesis in Camptotheca acuminata Decne seedlings. Industrial Crops and Products, 66, 137–143.CrossRefGoogle Scholar
  72. López-Meyer, M., & Nessler, C. L. (1997). Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. The Plant Journal, 11, 1167–1175.PubMedCrossRefPubMedCentralGoogle Scholar
  73. López-Meyer, M., Nessler, C. L., & McKnight, T. D. (1994). Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Medica, 60, 558–560.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lorence, A., & Nessler, C. L. (2004). Molecules of interest: Camptothecin, over four decades of surprising findings. Phytochemistry, 65, 2735–2749.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lorence, A., Medina-Bolivar, F., & Nessler, C. L. (2004). Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Reports, 22, 437–441.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Manjunatha, B. L., Singh, H. R., Ravikanth, G., Nataraja, K. N., Shankar, R., Kumar, S., & Shaanker, R. U. (2016). Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. Identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule. Journal of Biosciences, 41, 119–131.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Martin, K. M., Zhang, C.-L., Hembrom, M. E., Slater, A., & Madassery, J. (2008). Adventitious root induction in Ophiorrhiza prostrata: A tool for the production of camptothecin (an anticancer drug) and rapid propagation. Plant Biotechnology Reports, 2, 163–169.CrossRefGoogle Scholar
  78. Musavi, S. F., Dhavale, A., & Balakrishnan, R. M. (2015). Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Preparative Biochemistry & Biotechnology, 45, 158–172.CrossRefGoogle Scholar
  79. Namdeo, A. G., Sharma, A., & Mahadik, K. R. (2008). Plant review: Some observations on Nothapodytes foetida: An overview. Pharmacognosy Research, 2, 110–115.Google Scholar
  80. Neumann, G., & Römheld, V. (2002). Chapter 36: Root-induced changes in the availability of nutrients in the rhizosphere. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots the hidden half (3rd ed., pp. 620–622). New York: Marcel Dekker Inc.Google Scholar
  81. Oberlies, N. H., & Kroll, D. J. (2004). Camptothecin and Taxol: Historic achievements in natural products research. Journal of Natural Products, 67, 129–135.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Padmanabha, B. V., Chandrashekar, M., Ramesha, B. T., Gowda, H. C. H., Gunaga, R. P., Suhas, S., Vasudeva, R., Ganeshaiah, K. N., & Shaanker, R. U. (2006). Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham., in the Western Ghats, India: Implications for identifying high-yielding sources of the alkaloid. Current Science, 90, 95–100.Google Scholar
  83. Pan, X.-W., Xu, H.-H., Gao, X., & Lu, Y.-T. (2004). Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnology Letters, 26, 1745–1748.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Park, Y. G., Kim, M. H., Yang, J. K., Chung, Y. G., & Choi, M. S. (2003). Light-susceptibility of camptothecin production from in vitro cultures of Camptotheca acuminata Decne. Biotechnology and Bioprocess Engineering, 8, 32–36.CrossRefGoogle Scholar
  85. Pasqua, G., Monacelli, B., & Valletta, A. (2004). Cellular localisation of the anti-cancer drug camptothecin in Camptotheca acuminata Decne (Nyssaceae). European Journal of Histochemistry, 48, 321–327.PubMedPubMedCentralGoogle Scholar
  86. Pi, Y., Jiang, K., Hou, R., Gong, Y., Lin, J., Sun, X., & Tang, K. (2010). Examination of camptothecin and 10-hydroxycamptothecin in Camptotheca acuminiata plant cell culture, and the affected yield under several cell culture treatments. Biocell, 34, 139–143.PubMedPubMedCentralGoogle Scholar
  87. Pu, X., Qu, X., Chen, F., Bao, J., Zhang, G., & Luo, Y. (2013). Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Applied Microbiology and Biotechnology, 97, 9365–9375.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Pu, X., Chen, F., Yang, Y., Qu, X., Zhang, G., & Luo, Y. (2015). Isolation and characterization of Paenibacillus polymyxa LY214, a camptothecin-producing endophytic bacterium from Camptotheca acuminata. Journal of Industrial Microbiology & Biotechnology, 42, 1197–1202.CrossRefGoogle Scholar
  89. Puri, S. C., Verma, V., Amna, T., Qazi, G. N., & Spiteller, M. (2005). An endophytic fungus from Nothapodytes foetida that produces camptothecin. Journal of Natural Products, 68, 1717–1719.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Puri, S. C., Verma, V., Amna, T., Handa, G., Gupta, V., Verma, N., Khajuria, R. K., Saxena, A. K., Qazi, G. N., & Spiteller, M. (2008). Endophytic camptothecin and camptothecinoid producing fungi and process of producing the same. US Patent 7,378,268, 27 May 2008.Google Scholar
  91. Rajan, R., Varghese, S. C., Kurup, R., Gopalakrishnan, R., Venkataraman, R., Satheeshkumar, K., & Baby, S. (2013). Search for Camptothecin-yielding Ophiorrhiza species from southern Western Gaths in India: A HPTLC-densitometry study. Industrial Crops and Products, 43, 472–476.CrossRefGoogle Scholar
  92. Ramachandra Rao, S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 101–153.CrossRefGoogle Scholar
  93. Ramesha, B. T., Amna, T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., Ganeshaiah, K. N., Shaanker, R. U., Khajuria, R. K., Puri, S. C., & Qazi, G. N. (2008). Prospecting for Camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: Identification of high-yielding sources of Camptothecin and new families of Camptothecines. Journal of Chromatographic Science, 46, 362–368.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Ramesha, B. T., Suma, H. K., Senthilkumar, U., Priti, V., Ravikanth, G., Vasudeva, R., Kumar, T. R. S., Ganeshaiah, K. N., & Shaanker, R. U. (2013). New plant sources of the anti-cancer alkaloid, camptothecin from the Icacinaceae taxa, India. Phytomedicine, 20, 521–527.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Raskin, I., Ribnicky, D. M., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno, D. A., Ripoll, C., Yakoby, N., O’Neal, J. M., Cornwell, T., Pastor, I., & Fridlender, B. (2002). Plants and human health in the twenty-first century. Trends in Biotechnology, 20, 522–531.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Rehman, S., Shawl, A. S., Kour, A., Andrabi, R., Sudan, P., Sultan, P., Verma, V., & Qazi, G. N. (2008). An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Applied Biochemistry and Microbiology, 44, 203–209.CrossRefGoogle Scholar
  97. Rehman, S., Shawl, A. S., Kour, A., Sultan, P., Ahmad, K., Khajuria, R., & Qazi, G. N. (2009). Comparative studies and identification of camptothecin produced by an endophyte at shake flask and bioreactor. Natural Product Research, 23, 1050–1057.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Roja, G. (2006). Comparative studies on the camptothecin content from Nothapodytes foetida and Ophiorrhiza species. Natural Product Letters, 20, 85–88.CrossRefGoogle Scholar
  99. Roja, G. (2008). Micropropagation and production of Camptothecin from in vitro plants of Ophiorrhiza rugosa var. decumbens. Natural Product Research, 22, 1017–1023.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Roja, G., & Heble, M. R. (1994). The quinoline alkaloids camptothecin and 9-methoxycamptothecin from tissue-cultures and mature trees of Nothapodytes foetida. Phytochemistry, 36, 65–66.CrossRefGoogle Scholar
  101. Ruan, J., Zhang, J., Li, M., Zhu, Y., Sun, L., Jin, H., Su, H., & Xu, M. (2014). Dependence of UV-B-induced camptothecin production on nitrate reductase-mediated nitric oxide signaling Camptotheca acuminata suspension cell cultures. Plant Cell, Tissue and Organ Culture, 118, 269–278.CrossRefGoogle Scholar
  102. Saito, K., Sudo, H., Yamazaki, M., Koseki-Nakamura, M., Kitajima, M., Takayama, H., & Aimi, N. (2001). Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Reports, 20, 267–271.CrossRefGoogle Scholar
  103. Sakato, K., Tanaka, H., Mukai, N., & Misawa, M. (1974). Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agricultural and Biological Chemistry, 38, 217–218.CrossRefGoogle Scholar
  104. Sankar-Thomas, Y. D., & Lieberei, R. (2011). Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell, Tissue and Organ Culture, 106, 445–454.CrossRefGoogle Scholar
  105. Sankar-Thomas, Y. D., Saare-Surminski, K., & Lieberei, R. (2008). Plant regeneration via somatic embryogenesis of Camptotheca acuminata in temporary immersion system (TIS). Plant Cell, Tissue and Organ Culture, 95, 163–173.CrossRefGoogle Scholar
  106. Shaanker, R. U., Ramesha, B. T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., & Ganeshaiah, K. N. (2008). Chapter 10: Chemical profiling of Nothapodytes nimmoniana for camptothecin, an important anticancer alkaloid: Towards the development of a sustainable production system. In K. G. Ramawat & J. M. Mérillon (Eds.), Bioactive molecules and medical plants (pp. 197–213). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  107. Shweta, S., Zuehlke, S., Ramesha, B. T., Priti, V., Mohana Kumar, P., Ravikanth, G., Spiteller, M., Vasudeva, R., & Shaanker, R. U. (2010). Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycampthothecin, and 9-metoxycamptothecin. Phytochemistry, 71, 117–122.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Shweta, S., Gurumurthy, B. R., Ravikanth, G., Shaanker, R. U., & Shivanna, M. B. (2013a). Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecin. Phytomedicine, 20, 337–342.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Shweta, S., Hima Bindu, J., Raghu, J., Suma, H. K., Manjunatha, B. L., Kumara, P. M., Ravikanth, G., Nataraja, K. N., Ganeshaiah, K. N., & Shaanker, R. U. (2013b). Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecin from Miquelia dentata Bedd. (Icacinaceae). Phytomedicine, 20, 913–917.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sirikantaramas, S., Asano, T., Sudo, H., Yamazaki, M., & Saito, K. (2007a). Camptothecin: Therapeutic potential and biotechnology. Current Pharmaceutical Biotechnology, 8, 196–202.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Sirikantaramas, S., Sudo, H., Asano, T., Yamazaki, M., & Saito, K. (2007b). Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry, 68, 2881–2886.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Song, S. H., & Byun, S. Y. (1998). Characterization of cell growth and camptothecin production in cell cultures of Camptotheca acuminata. Journal of Microbiology and Biotechnology, 8, 631–638.Google Scholar
  113. Soujanya, K. N., Siva, R., Kumara, P. M., Srimany, A., Ravikanth, G., Mulani, F. A., Aarthy, T., Thulasiram, H. V., Santhoshkumar, T. R., Nataraja, K. N., & Shaanker, R. U. (2017). Camptothecin-producing endophytic bacteria from Pyrenacantha volubilis Hook. (Icacinaceae): A possible role of a plasmid in the production of camptothecin. Phytomedicine, 36, 160–167.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Srinivas, K. V. N. S., & Das, B. (2003). 9-methoxy-20-O-acetylcamptothecin, a minor new alkaloid from Nothapodytes foetida. Biochemical Systematics and Ecology, 31, 85–87.CrossRefGoogle Scholar
  115. Su, H., Kang, J.-C., Cao, J.-J., Mo, L., & Hyde, K. D. (2014). Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai Journal of Science, 41, 1–13.Google Scholar
  116. Sudo, H., Yamakawa, T., Yamazaki, M., Aimi, N., & Saito, K. (2002). Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnology Letters, 24, 359–363.CrossRefGoogle Scholar
  117. Suhas, S., Ramesha, B. T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., Ganeshaiah, K. N., & Shaanker, R. U. (2007). Chemical profiling of Nothapodytes nimmoniana populations in the Western Ghats, India for anti-cancer compound, camptothecin. Current Science, 92, 1142–1147.Google Scholar
  118. Tafur, S., Nelson, J. D., DeLong, D. C., & Svoboda, G. H. (1976). Antiviral components of Ophiorrhiza mungos isolation of camptothecin and 10-methoxycamptothecin. Lloydia, 39, 261–262.PubMedPubMedCentralGoogle Scholar
  119. Tien, H. J., Tien, J. M., Yeh, M. Y., et al. (1977). Studies on the constituents of Camptotheca acuminata Done (I). The constituents of leaves. Hua Hsueh, 1977(2), 51–54.Google Scholar
  120. Thengane, S. R., Kulkarni, D. K., Shrikhande, V. A., Joshi, S. P., Sonawane, K. B., & Krishnamurthy, K. V. (2003). Influence of medium composition on callus induction and camptothecin(s) accumulation in Nothapodytes foetida. Plant Cell, Tissue and Organ Culture, 72, 247–251.CrossRefGoogle Scholar
  121. van Hengel, A. J., Harkes, M. P., Wichers, H. J., Hesselink, P. G. M., & Buitelaar, R. M. (1992). Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminata. Plant Cell, Tissue and Organ Culture, 28, 11–18.CrossRefGoogle Scholar
  122. Venugopalan, A., & Srivastava, S. (2015a). Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresource Technology, 188, 251–257.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Venugopalan, A., & Srivastava, S. (2015b). Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnology Advances, 33, 873–887.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Venugopalan, A., Potunuru, U. R., Dixit, M., & Srivastava, S. (2016). Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresource Technology, 206, 104–111.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Verpoorte, R., van der Heijden, R., ten Hoopen, H. J. G., & Memelink, J. (1998). Metabolic engineering for the improvement of plant secondary metabolite production. Plant Tissue Culture and Biotechnology, 4, 3–17.Google Scholar
  126. Vincent, R. M., López-Meyer, M., McKnight, T. D., & Nessler, C. L. (1997). Sustained harvest of camptothecin from the leaves of Camptotheca acuminata. Journal of Natural Products, 60, 618–619.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Vineesh, V. R., Fijesh, P. V., Louis, C. J., Jaimsha, V. K., & Padikkala, J. (2007). In vitro production of camptothecin (an anticancer drug) through albino plants of Ophiorrhiza rugosa var. decumbens. Current Science, 92, 1216–1218.Google Scholar
  128. Viraporn, V., Yamazaki, M., Saito, K., Denduangboripant, J., Chayamarit, K., Chuanasa, T., & Sukrong, S. (2011). Correlation of camptothecin-producing ability and phylogenetic relationship in the genus Ophiorrhiza. Planta Medica, 77, 759–764.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Wall, M. E., Wani, M. C., Natschke, S. M., & Nicholas, A. W. (1986). Plant antitumor agents. 22. Isolation of 11-hydroxycamptothecin from Camptotheca acuminata Decne: Total synthesis and biological activity. Journal of Medicinal Chemistry, 29, 1553–1555.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Wang, X., Tanaka, M., Krstin, S., Peixoto, H. S., de Melo Moura, C. C., & Wink, M. (2016). Cytoskeletal interference – a new mode of action for the anticancer drugs camptothecin and topotecan. European Journal of Pharmacology, 789, 265–274.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Watase, I., Sudo, H., Yamazaki, M., & Saito, K. (2004). Regeneration of transformed Ophiorrhiza pumila plants producing camptothecin. Plant Biotechnology, 21, 337–342.CrossRefGoogle Scholar
  132. Wetterauer, B. (2008). Produktion von Camptothecin in Ophiorrhiza mungos – Pflanzen, Organkulturen und Fermentation. Dissertation, Ruprecht-Karls-Universität Heidelberg.Google Scholar
  133. Wiedenfeld, H., Furmanowa, M., Roeder, E., Guzewska, J., & Gustowski, W. (1997). Camptothecin and 10-hydroxycamptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell, Tissue and Organ Culture, 49, 213–218.CrossRefGoogle Scholar
  134. Wink, M. (1987). Why do lupin cell cultures fail to produce alkaloids in large quantities? Plant Cell, Tissue and Organ Culture, 8, 103–111.CrossRefGoogle Scholar
  135. Wink, M., Alfermann, A. W., Franke, R., Wetterauer, B., Distl, M., Windhoevel, J., Krohn, O., Fuss, E., Garden, H., Mohagheghzadeh, A., Wildi, E., & Ripplinger, P. (2005). Sustainable bioproduction of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Genetic Resources, 3, 90–100.CrossRefGoogle Scholar
  136. Winterfeldt, E., Korth, T., Pike, D., & Boch, M. (1972). The biogenetically oriented total synthesis of camptothecin and 7-chlorocamptothecin. Angewandte Chemie, International Edition, 11, 289–290.CrossRefGoogle Scholar
  137. Wu, T. S., Leu, Y. L., Hsu, H. C., Ou, L. F., Chen, C. C., Chen, C. F., Ou, J. C., & Wu, Y. C. (1995). Constituents and cytotoxic principles of Nothapodytes foetida. Phytochemistry, 39, 383–385.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wu, S.-F., Hsieh, P.-W., Wu, C.-C., Lee, C.-L., Chen, S.-L., Lu, C.-Y., Wu, T.-S., Chang, F.-R., & Wu, Y.-C. (2008). Camptothecinoids from the seeds of Taiwanese Nothapodytes foetida. Molecules, 13, 1361–1371.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Yamazaki, Y., Sudo, H., Yamazaki, M., Aimi, N., & Saito, K. (2003a). Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: Cloning, characterization and differential expression in tissues and by stress compounds. Plant & Cell Physiology, 44, 395–403.CrossRefGoogle Scholar
  140. Yamazaki, Y., Urano, A., Sudo, H., Kitajima, M., Takayama, H., Yamazaki, M., Aimi, N., & Saito, K. (2003b). Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry, 62, 461–470.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Yamazaki, Y., Kitajima, M., Arita, M., Takayama, H., Sudo, H., Yamazaki, M., Aimi, N., & Saito, K. (2004). Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C] glucose. Plant Physiology, 134, 161–170.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Yamazaki, M., Mochida, K., Asano, T., Nakabayashi, R., Chiba, M., Udomson, N., Yamazaki, Y., Goodenowe, D. B., Sankawa, U., Yoshida, T., Toyoda, A., Totoki, Y., Sakaki, Y., Góngora-Castillo, E., Buell, C. R., Sakurai, T., & Saito, K. (2013). Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. Plant & Cell Physiology, 54, 686–696.CrossRefGoogle Scholar
  143. Yan, X.-F., Wang, Y., Yu, T., Zhang, Y.-H., & Dai, S.-J. (2003). Variations in camptothecin content in Camptotheca acuminata leaves. Botanical bulletin of Academia Sinica, 44, 99–105.Google Scholar
  144. Yan, X.-F., Wang, Y., Zhang, Y.-H., Yu, T., Ma, M.-F., Ju, S.-J., & Chen, S. (2005). Tissue-specific and developmental regulation of camptothecin and 10-hydroxycamptothecin levels in Camptotheca acuminata. Botanical Bulletin of Academia Sinica, 46, 325–331.Google Scholar
  145. Yang, D.-C., & Choi, Y.-E. (2000). Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Reports, 19, 491–496.CrossRefGoogle Scholar
  146. Ya-ut, P., Chareonsap, P., & Sukrong, S. (2011). Micropropagation and hairy root culture of Ophiorrhiza alata Craib for camptothecin production. Biotechnology Letters, 33, 2519–2526.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Zhang, Z., Li, S., Zhang, S., Liang, C., Gorenstein, D., & Beasley, R. S. (2004). New camptothecin and ellagic acid analogues from the root bark of Camptotheca acuminata. Planta Medica, 70, 1216–1221.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Zhao, J., Shan, T., Mou, Y., & Zhou, L. (2011). Plant-derived bioactive compounds produced by endophytic fungi. Mini-Reviews in Medicinal Chemistry, 11, 159–168.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Zhou, B.-N., Hoch, J. M., Johnson, R. K., Mattern, M. R., Eng, W.-K., Ma, J., Hecht, S. M., Newman, D. J., & Kingston, D. G. I. (2000). Use of COMPARE analysis to discover new natural product drugs: Isolation of camptothecin and 9-methoxycamptothecin from a new source. Journal of Natural Products, 63, 1273–1276.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Zu, Y.-G., Tang, Z.-H., Yu, J.-H., & Zhao, C.-J. (2003). Camptothecin and 10-hydroxycamptothecin accumulate differentially under specific developmental control in Camptotheca acuminata. Acta Botanica Sinica, 45, 494–499.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
  2. 2.Formerly ROOTec GmbHHeidelbergGermany

Personalised recommendations