Advertisement

Drosophila as a Model to Gain Insight into the Role of lncRNAs in Neurological Disorders

  • Luca Lo Piccolo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1076)

Abstract

It is now clear that the majority of transcription in humans results in the production of long non-protein-coding RNAs (lncRNAs) with a variable length spanning from 200 bp up to several kilobases. To date, we have a limited understanding of the lncRNA function, but a huge number of evidences have suggested that lncRNAs represent an outstanding asset for cells. In particular, temporal and spatial expression of lncRNAs appears to be important for proper neurological functioning. Stunningly, abnormal lncRNA function has been found as being critical for the onset of neurological disorders. This chapter focus on the lncRNAs with a role in diseases affecting the central nervous system with particular regard for the lncRNAs causing those neurodegenerative diseases that exhibit dementia and/or motor dysfunctions. A specific section will be dedicated to the human neuronal lncRNAs that have been modelled in Drosophila. Finally, even if only few examples have been reported so far, an overview of the Drosophila lncRNAs with neurological functions will be also included in this chapter.

Keywords

lncRNAs Neurological disorders Dementia Motor system disorders Drosophila RNA processing hnRNPs Toxic aggregates 

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287(5461):2185–95.CrossRefPubMedGoogle Scholar
  2. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 2011;39(Database issue):D146–51.  https://doi.org/10.1093/nar/gkq1138.CrossRefPubMedGoogle Scholar
  3. Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76 Pt A:27–50.  https://doi.org/10.1016/j.neuropharm.2013.07.004.CrossRefPubMedGoogle Scholar
  4. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013;77(4):639–46.  https://doi.org/10.1016/j.neuron.2013.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Au PC, Zhu QH, Dennis ES, Wang MB. Long non-coding RNA-mediated mechanisms independent of the RNAi pathway in animals and plants. RNA Biol. 2011;8(3):404–14.CrossRefPubMedGoogle Scholar
  6. Auluck PK, Meulener MC, Bonini NM. Mechanisms of suppression of {alpha}-Synuclein neurotoxicity by Geldanamycin in Drosophila. J Biol Chem. 2005;280(4):2873–8.  https://doi.org/10.1074/jbc.M412106200.CrossRefPubMedGoogle Scholar
  7. Bartonicek N, Maag JL, Dinger ME. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer. 2016;15(1):43.  https://doi.org/10.1186/s12943-016-0530-6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bellen HJ, Tong C, Tsuda H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci. 2010;11(7):514–22.  https://doi.org/10.1038/nrn2839.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Benetatos L, Voulgaris E, Vartholomatos G. The crosstalk between long non-coding RNAs and PI3K in cancer. Med Oncol. 2017;34(3):39.  https://doi.org/10.1007/s12032-017-0897-2.CrossRefPubMedGoogle Scholar
  10. Bhartiya D, Pal K, Ghosh S, Kapoor S, Jalali S, Panwar B, et al. lncRNome: a comprehensive knowledgebase of human long noncoding RNAs. Database (Oxford), 2013., bat034. 2013.  https://doi.org/10.1093/database/bat034.
  11. Carrieri C, Forrest AR, Santoro C, Persichetti F, Carninci P, Zucchelli S, Gustincich S. Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci. 2015;9:114.  https://doi.org/10.3389/fncel.2015.00114.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cerk S, Schwarzenbacher D, Adiprasito JB, Stotz M, Hutterer GC, Gerger A, et al. Current status of long non-coding RNAs in human breast Cancer. Int J Mol Sci. 2016;17(9).  https://doi.org/10.3390/ijms17091485.CrossRefPubMedCentralGoogle Scholar
  13. Chan HY. RNA-mediated pathogenic mechanisms in polyglutamine diseases and amyotrophic lateral sclerosis. Front Cell Neurosci. 2014;8:431.  https://doi.org/10.3389/fncel.2014.00431.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P, Warren ST. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol. 2008;4(4):256–63.  https://doi.org/10.1038/nchembio.78.CrossRefPubMedGoogle Scholar
  15. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41(Database issue):D983–6.  https://doi.org/10.1093/nar/gks1099.CrossRefPubMedGoogle Scholar
  16. Chen S, Liang H, Yang H, Zhou K, Xu L, Liu J, et al. LincRNa-p21: function and mechanism in cancer. Med Oncol. 2017;34(5):98.  https://doi.org/10.1007/s12032-017-0959-5.CrossRefPubMedGoogle Scholar
  17. Cheng L, Ming H, Zhu M, Wen B. Long noncoding RNAs as organizers of nuclear architecture. Sci China Life Sci. 2016;59(3):236–44.  https://doi.org/10.1007/s11427-016-5012-y.CrossRefPubMedGoogle Scholar
  18. Chujo T, Yamazaki T, Hirose T. Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim Biophys Acta. 2016;1859(1):139–46.  https://doi.org/10.1016/j.bbagrm.2015.05.007.CrossRefPubMedGoogle Scholar
  19. Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, et al. An intronic ncRNA-dependent regulation of SORL1 expression affecting Abeta formation is upregulated in post-mortem Alzheimer’s disease brain samples. Dis Model Mech. 2013;6(2):424–33.  https://doi.org/10.1242/dmm.009761.CrossRefPubMedGoogle Scholar
  20. Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet. 2014;5:164.  https://doi.org/10.3389/fgene.2014.00164.CrossRefPubMedPubMedCentralGoogle Scholar
  21. DasBanerjee T, Dagda RY, Dagda M, Chu CT, Rice M, Vazquez-Mayorga E, Dagda RK. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA. J Neurochem. 2017;142:545.  https://doi.org/10.1111/jnc.14083.CrossRefPubMedCentralGoogle Scholar
  22. Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 2009;5(8):e1000600.  https://doi.org/10.1371/journal.pgen.1000600.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA. 2015;21(12):2007–22.  https://doi.org/10.1261/rna.053918.115.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.  https://doi.org/10.1101/gr.132159.111.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 2009;37(Database issue):D122–6.  https://doi.org/10.1093/nar/gkn617.CrossRefPubMedGoogle Scholar
  26. Dong X, Chen K, Cuevas-Diaz Duran R, You Y, Sloan SA, Zhang Y, et al. Comprehensive identification of long non-coding RNAs in purified cell types from the brain reveals functional LncRNA in OPC fate determination. PLoS Genet. 2015;11(12):e1005669.  https://doi.org/10.1371/journal.pgen.1005669.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Drapeau MD, Radovic A, Wittkopp PJ, Long AD. A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the Drosophila melanogaster larval brain. J Neurobiol. 2003;55(1):53–72.  https://doi.org/10.1002/neu.10196.CrossRefPubMedGoogle Scholar
  28. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.  https://doi.org/10.1038/nrg3074.CrossRefPubMedGoogle Scholar
  29. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 2008;14(7):723–30.  https://doi.org/10.1038/nm1784.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.  https://doi.org/10.1038/nrg3606.CrossRefPubMedGoogle Scholar
  31. Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci. 2009;10:109.  https://doi.org/10.1186/1471-2202-10-109.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature. 2000;408(6808):101–6.  https://doi.org/10.1038/35040584.CrossRefPubMedGoogle Scholar
  33. Feyder M, Goff LA. Investigating long noncoding RNAs using animal models. J Clin Invest. 2016;126(8):2783–91.  https://doi.org/10.1172/JCI84422.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Francelle L, Galvan L, Gaillard MC, Petit F, Bernay B, Guillermier M, et al. Striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin in vivo. Neurobiol Aging. 2015;36(3):1601 e1607–16.  https://doi.org/10.1016/j.neurobiolaging.2014.11.014.CrossRefGoogle Scholar
  35. Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee KH, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015;525(7567):129–33.  https://doi.org/10.1038/nature14974.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Fritah S, Niclou SP, Azuaje F. Databases for lncRNAs: a comparative evaluation of emerging tools. RNA. 2014;20(11):1655–65.  https://doi.org/10.1261/rna.044040.113.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gibert JM, Simpson P. Evolution of cis-regulation of the proneural genes. Int J Dev Biol. 2003;47(7–8):643–51.PubMedGoogle Scholar
  38. Gong J, Liu C, Liu W, Xiang Y, Diao L, Guo AY, Han L. LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Res. 2017;45(D1):D79–84.  https://doi.org/10.1093/nar/gkw835.CrossRefPubMedGoogle Scholar
  39. Gutschner T, Hammerle M, Diederichs S. MALAT1 -- a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013;91(7):791–801.  https://doi.org/10.1007/s00109-013-1028-y.CrossRefGoogle Scholar
  40. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.  https://doi.org/10.1038/nature10398.CrossRefPubMedPubMedCentralGoogle Scholar
  41. He D, Wang J, Lu Y, Deng Y, Zhao C, Xu L, et al. lncRNA functional networks in oligodendrocytes reveal stage-specific myelination control by an lncOL1/Suz12 complex in the CNS. Neuron. 2017;93(2):362–78.  https://doi.org/10.1016/j.neuron.2016.11.044.CrossRefPubMedGoogle Scholar
  42. Hu L, Xu Z, Hu B, Lu ZJ. COME: a robust coding potential calculation tool for lncRNA identification and characterization based on multiple features. Nucleic Acids Res. 2017;45(1):e2.  https://doi.org/10.1093/nar/gkw798.CrossRefPubMedGoogle Scholar
  43. Inagaki S, Numata K, Kondo T, Tomita M, Yasuda K, Kanai A, Kageyama Y. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes Cells. 2005;10(12):1163–73.  https://doi.org/10.1111/j.1365-2443.2005.00910.x.CrossRefPubMedGoogle Scholar
  44. Ip JY, Nakagawa S. Long non-coding RNAs in nuclear bodies. Develop Growth Differ. 2012;54(1):44–54.  https://doi.org/10.1111/j.1440-169X.2011.01303.x.CrossRefGoogle Scholar
  45. Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C, Kanegami A, et al. Regulatory role of RNA chaperone TDP-43 for RNA Misfolding and repeat-associated translation in SCA31. Neuron. 2017;94(1):108–24 e107.  https://doi.org/10.1016/j.neuron.2017.02.046.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jin P, Duan R, Qurashi A, Qin Y, Tian D, Rosser TC, et al. Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron. 2007;55(4):556–64.  https://doi.org/10.1016/j.neuron.2007.07.020.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Johnson R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis. 2012;46(2):245–54.  https://doi.org/10.1016/j.nbd.2011.12.006.CrossRefPubMedGoogle Scholar
  48. Johnson R, Richter N, Jauch R, Gaughwin PM, Zuccato C, Cattaneo E, Stanton LW. Human accelerated region 1 noncoding RNA is repressed by REST in Huntington’s disease. Physiol Genomics. 2010;41(3):269–74.  https://doi.org/10.1152/physiolgenomics.00019.2010.CrossRefPubMedGoogle Scholar
  49. Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90(3):430–40.  https://doi.org/10.1093/cvr/cvr097.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72.  https://doi.org/10.1073/pnas.0904715106.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Koon AC, Chan HY. Drosophila melanogaster As a model organism to study RNA toxicity of repeat expansion-associated neurodegenerative and neuromuscular diseases. Front Cell Neurosci. 2017;11:70.  https://doi.org/10.3389/fncel.2017.00070.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci. 2012;15(11):1488–97.  https://doi.org/10.1038/nn.3230.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lakhotia SC, Sharma A. The 93D (hsr-omega) locus of Drosophila: non-coding gene with house-keeping functions. Genetica. 1996;97(3):339–48.CrossRefPubMedGoogle Scholar
  54. Lakhotia SC, Rajendra TK, Prasanth KV. Developmental regulation and complex organization of the promoter of the non-coding hsr(omega) gene of Drosophila melanogaster. J Biosci. 2001;26(1):25–38.CrossRefPubMedGoogle Scholar
  55. Lakhotia SC, Mallik M, Singh AK, Ray M. The large noncoding hsromega-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma. 2012;121(1):49–70.  https://doi.org/10.1007/s00412-011-0341-x.CrossRefPubMedGoogle Scholar
  56. Lashley T, Rohrer JD, Mead S, Revesz T. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol. 2015;41(7):858–81.  https://doi.org/10.1111/nan.12250.CrossRefPubMedGoogle Scholar
  57. Lee DY, Moon J, Lee ST, Jung KH, Park DK, Yoo JS, et al. Distinct expression of long non-coding RNAs in an Alzheimer’s disease model. J Alzheimers Dis. 2015;45(3):837–49.  https://doi.org/10.3233/JAD-142919.CrossRefPubMedGoogle Scholar
  58. Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 2016;167(3):774–88 e717.  https://doi.org/10.1016/j.cell.2016.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Li M, Liu L. Neural functions of long noncoding RNAs in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015;201(9):921–6.  https://doi.org/10.1007/s00359-014-0937-8.CrossRefPubMedGoogle Scholar
  60. Li M, Wen S, Guo X, Bai B, Gong Z, Liu X, et al. The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Res. 2012;40(22):11714–27.  https://doi.org/10.1093/nar/gks943.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.  https://doi.org/10.1093/nar/gkt1248.CrossRefPubMedGoogle Scholar
  62. Li H, Ma SQ, Huang J, Chen XP, Zhou HH. Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget. 2017;8:39859.  https://doi.org/10.18632/oncotarget.16339.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.  https://doi.org/10.1016/j.molcel.2014.01.021.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Liu S, Cui B, Dai ZX, Shi PK, Wang ZH, Guo YY. Long non-coding RNA HOTAIR promotes Parkinson’s disease induced by MPTP through up-regulating the expression of LRRK2. Curr Neurovasc Res. 2016;13(2):115–20.CrossRefPubMedGoogle Scholar
  65. Liu W, Zhang Q, Zhang J, Pan W, Zhao J, Xu Y. Long non-coding RNA MALAT1 contributes to cell apoptosis by sponging miR-124 in Parkinson disease. Cell Biosci. 2017;7:19.  https://doi.org/10.1186/s13578-017-0147-5.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lo Piccolo L, Yamaguchi M. RNAi of arcRNA hsromega affects sub-cellular localization of Drosophila FUS to drive neurodiseases. Exp Neurol. 2017;292:125–34.  https://doi.org/10.1016/j.expneurol.2017.03.011.CrossRefPubMedGoogle Scholar
  67. Lo Piccolo L, Attardi A, Bonaccorso R, Li Greci L, Giurato G, Ingrassia AM, Onorati MC. ISWI ATP-dependent remodeling of nucleoplasmic omega-speckles in the brain of Drosophila melanogaster. J Genet Genomics. 2017;44(2):85–94.  https://doi.org/10.1016/j.jgg.2016.12.002.CrossRefPubMedGoogle Scholar
  68. Lourenco GF, Janitz M, Huang Y, Halliday GM. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiol Dis. 2015;82:445–54.  https://doi.org/10.1016/j.nbd.2015.07.011.CrossRefPubMedGoogle Scholar
  69. Mackenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K, et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol. 2013;126(6):859–79.  https://doi.org/10.1007/s00401-013-1181-y.CrossRefPubMedGoogle Scholar
  70. Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci CB. The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep. 2016;43(11):1193–204.  https://doi.org/10.1007/s11033-016-4054-3.CrossRefPubMedGoogle Scholar
  71. Mallik M, Lakhotia SC. The developmentally active and stress-inducible noncoding hsromega gene is a novel regulator of apoptosis in Drosophila. Genetics. 2009a;183(3):831–52.  https://doi.org/10.1534/genetics.109.108571.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Mallik M, Lakhotia SC. RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol. 2009b;6(4):464–78.CrossRefPubMedGoogle Scholar
  73. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6.  https://doi.org/10.1080/14734220510007914.CrossRefPubMedGoogle Scholar
  74. Marchese FP, Huarte M. Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics. 2014;9(1):21–6.  https://doi.org/10.4161/epi.27472.CrossRefPubMedGoogle Scholar
  75. Martin JR, Ollo R. A new Drosophila Ca2+/calmodulin-dependent protein kinase (Caki) is localized in the central nervous system and implicated in walking speed. EMBO J. 1996;15(8):1865–76.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis. 2011;41(2):308–17.  https://doi.org/10.1016/j.nbd.2010.09.019.CrossRefPubMedGoogle Scholar
  77. Massone S, Ciarlo E, Vella S, Nizzari M, Florio T, Russo C, et al. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid beta secretion. Biochim Biophys Acta. 2012;1823(7):1170–7.  https://doi.org/10.1016/j.bbamcr.2012.05.001.CrossRefPubMedGoogle Scholar
  78. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105(2):716–21.  https://doi.org/10.1073/pnas.0706729105.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Mizielinska S, Gronke S, Niccoli T, Ridler CE, Clayton EL, Devoy A, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science. 2014;345(6201):1192–4.  https://doi.org/10.1126/science.1256800.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Moens TG, Partridge L, Isaacs AM. Genetic models of C9orf72: what is toxic? Curr Opin Genet Dev. 2017;44:92–101.  https://doi.org/10.1016/j.gde.2017.01.006.CrossRefPubMedGoogle Scholar
  81. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339(6125):1335–8.  https://doi.org/10.1126/science.1232927.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mutsuddi M, Lakhotia SC. Spatial expression of the hsr-omega (93D) gene in different tissues of Drosophila melanogaster and identification of promoter elements controlling its developmental expression. Dev Genet. 1995;17(4):303–11.  https://doi.org/10.1002/dvg.1020170403.CrossRefPubMedGoogle Scholar
  83. Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I. The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol. 2004;14(4):302–8.  https://doi.org/10.1016/j.cub.2004.01.034.CrossRefPubMedGoogle Scholar
  84. Negre B, Simpson P. Evolution of the achaete-scute complex in insects: convergent duplication of proneural genes. Trends Genet. 2009;25(4):147–52.  https://doi.org/10.1016/j.tig.2009.02.001.CrossRefPubMedGoogle Scholar
  85. Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31(3):522–33.  https://doi.org/10.1038/emboj.2011.459.CrossRefPubMedGoogle Scholar
  86. Nishimoto Y, Nakagawa S, Hirose T, Okano HJ, Takao M, Shibata S, et al. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain. 2013;6:31.  https://doi.org/10.1186/1756-6606-6-31.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Onorati MC, Lazzaro S, Mallik M, Ingrassia AM, Carreca AP, Singh AK, et al. The ISWI chromatin remodeler organizes the hsromega ncRNA-containing omega speckle nuclear compartments. PLoS Genet. 2011;7(5):e1002096.  https://doi.org/10.1371/journal.pgen.1002096.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM, Hatzigeorgiou AG. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 2013;41(Database issue):D239–45.  https://doi.org/10.1093/nar/gks1246.CrossRefPubMedGoogle Scholar
  89. Paul JW, Gitler AD. Cell biology. Clogging information flow in ALS. Science. 2014;345(6201):1118–9.  https://doi.org/10.1126/science.1259461.CrossRefPubMedGoogle Scholar
  90. Peschansky VJ, Pastori C, Zeier Z, Wentzel K, Velmeshev D, Magistri M, et al. The long non-coding RNA FMR4 promotes proliferation of human neural precursor cells and epigenetic regulation of gene expression in trans. Mol Cell Neurosci. 2016;74:49–57.  https://doi.org/10.1016/j.mcn.2016.03.008.CrossRefPubMedGoogle Scholar
  91. Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443(7108):167–72.  https://doi.org/10.1038/nature05113.CrossRefPubMedGoogle Scholar
  92. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):459–68.  https://doi.org/10.1038/nn.2779.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC. Omega speckles – a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci. 2000;113(Pt 19):3485–97.PubMedGoogle Scholar
  94. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62.  https://doi.org/10.1038/nrg.2015.10.CrossRefPubMedGoogle Scholar
  95. Qurashi A, Li W, Zhou JY, Peng J, Jin P. Nuclear accumulation of stress response mRNAs contributes to the neurodegeneration caused by fragile X premutation rCGG repeats. PLoS Genet. 2011;7(6):e1002102.  https://doi.org/10.1371/journal.pgen.1002102.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Qurashi A, Liu H, Ray L, Nelson DL, Duan R, Jin P. Chemical screen reveals small molecules suppressing fragile X premutation rCGG repeat-mediated neurodegeneration in Drosophila. Hum Mol Genet. 2012;21(9):2068–75.  https://doi.org/10.1093/hmg/dds024.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Rajendran L, Schneider A, Schlechtingen G, Weidlich S, Ries J, Braxmeier T, et al. Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting. Science. 2008;320(5875):520–3.  https://doi.org/10.1126/science.1156609.CrossRefPubMedGoogle Scholar
  98. Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell. 2013;12(5):616–28.  https://doi.org/10.1016/j.stem.2013.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Rao A, Rajkumar T, Mani S. Perspectives of long non-coding RNAs in cancer. Mol Biol Rep. 2017;44(2):203–18.  https://doi.org/10.1007/s11033-017-4103-6.CrossRefPubMedGoogle Scholar
  100. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001;11(6):1114–25.  https://doi.org/10.1101/gr.169101.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Riva P, Ratti A, Venturin M. The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res. 2016;13(11):1219–31.CrossRefPubMedGoogle Scholar
  102. Roberts TC, Morris KV, Wood MJ. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1652):20130507.  https://doi.org/10.1098/rstb.2013.0507.CrossRefGoogle Scholar
  103. Rogoyski OM, Pueyo JI, Couso JP, Newbury SF. Functions of long non-coding RNAs in human disease and their conservation in Drosophila development. Biochem Soc Trans. 2017;45:895.  https://doi.org/10.1042/BST20160428.CrossRefPubMedGoogle Scholar
  104. Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med. 2012;10:103.  https://doi.org/10.1186/1479-5876-10-103.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Sasayama H, Shimamura M, Tokuda T, Azuma Y, Yoshida T, Mizuno T, et al. Knockdown of the Drosophila fused in sarcoma (FUS) homologue causes deficient locomotive behavior and shortening of motoneuron terminal branches. PLoS One. 2012;7(6):e39483.  https://doi.org/10.1371/journal.pone.0039483.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Scheele C, Petrovic N, Faghihi MA, Lassmann T, Fredriksson K, Rooyackers O, et al. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics. 2007;8:74.  https://doi.org/10.1186/1471-2164-8-74.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Shelkovnikova TA, Robinson HK, Troakes C, Ninkina N, Buchman VL. Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Hum Mol Genet. 2014;23(9):2298–312.  https://doi.org/10.1093/hmg/ddt622.CrossRefPubMedGoogle Scholar
  108. Slawson JB, Kuklin EA, Ejima A, Mukherjee K, Ostrovsky L, Griffith LC. Central regulation of locomotor behavior of Drosophila melanogaster depends on a CASK isoform containing CaMK-like and L27 domains. Genetics. 2011;187(1):171–84.  https://doi.org/10.1534/genetics.110.123406.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Sofola OA, Jin P, Qin Y, Duan R, Liu H, de Haro M, et al. RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron. 2007;55(4):565–71.  https://doi.org/10.1016/j.neuron.2007.07.021.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, Soreq H. Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol. 2014;10(3):e1003517.  https://doi.org/10.1371/journal.pcbi.1003517.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Soshnev AA, Li X, Wehling MD, Geyer PK. Context differences reveal insulator and activator functions of a Su(Hw) binding region. PLoS Genet. 2008;4(8):e1000159.  https://doi.org/10.1371/journal.pgen.1000159.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Soshnev AA, Ishimoto H, McAllister BF, Li X, Wehling MD, Kitamoto T, Geyer PK. A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics. 2011;189(2):455–68.  https://doi.org/10.1534/genetics.111.131706.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Spindler SR, Hartenstein V. The Drosophila neural lineages: a model system to study brain development and circuitry. Dev Genes Evol. 2010;220(1–2):1–10.  https://doi.org/10.1007/s00427-010-0323-7.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Stanek D, Fox AH. Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol. 2017;46:94–101.  https://doi.org/10.1016/j.ceb.2017.05.001.CrossRefPubMedGoogle Scholar
  115. Stepto A, Gallo JM, Shaw CE, Hirth F. Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol. 2014;127(3):377–89.  https://doi.org/10.1007/s00401-013-1235-1.CrossRefPubMedGoogle Scholar
  116. Sun M, Kraus WL. Minireview: long noncoding RNAs: new “links” between gene expression and cellular outcomes in endocrinology. Mol Endocrinol. 2013;27(9):1390–402.  https://doi.org/10.1210/me.2013-1113.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sunwoo JS, Lee ST, Im W, Lee M, Byun JI, Jung KH, et al. Altered expression of the long noncoding RNA NEAT1 in Huntington’s disease. Mol Neurobiol. 2017;54(2):1577–86.  https://doi.org/10.1007/s12035-016-9928-9.CrossRefPubMedGoogle Scholar
  118. Tan H, Poidevin M, Li H, Chen D, Jin P. MicroRNA-277 modulates the neurodegeneration caused by fragile X premutation rCGG repeats. PLoS Genet. 2012;8(5):e1002681.  https://doi.org/10.1371/journal.pgen.1002681.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Tan JY, Vance KW, Varela MA, Sirey T, Watson LM, Curtis HJ, et al. Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat Struct Mol Biol. 2014;21(11):955–61.  https://doi.org/10.1038/nsmb.2902.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci. 2011;14(4):452–8.  https://doi.org/10.1038/nn.2778.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011;147(7):1537–50.  https://doi.org/10.1016/j.cell.2011.11.055.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013;41(Database issue):D246–51.  https://doi.org/10.1093/nar/gks915.CrossRefPubMedGoogle Scholar
  123. Wan P, Su W, Zhuo Y. The role of long noncoding RNAs in neurodegenerative diseases. Mol Neurobiol. 2017;54(3):2012–21.  https://doi.org/10.1007/s12035-016-9793-6.CrossRefPubMedGoogle Scholar
  124. Weidle UH, Birzele F, Kollmorgen G, Ruger R. Long non-coding RNAs and their role in metastasis. Cancer Genomics Proteomics. 2017;14(3):143–60.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Wen X, Tan W, Westergard T, Krishnamurthy K, Markandaiah SS, Shi Y, et al. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron. 2014;84(6):1213–25.  https://doi.org/10.1016/j.neuron.2014.12.010.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Weng M, Wu D, Yang C, Peng H, Wang G, Wang T, Li X. Noncoding RNAs in the development, diagnosis, and prognosis of colorectal cancer. Transl Res. 2017;181:108–20.  https://doi.org/10.1016/j.trsl.2016.10.001.CrossRefPubMedGoogle Scholar
  127. Wu Y, Le W, Jankovic J. Preclinical biomarkers of Parkinson disease. Arch Neurol. 2011;68(1):22–30.  https://doi.org/10.1001/archneurol.2010.321.CrossRefPubMedGoogle Scholar
  128. Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull. 2013;97:69–80.  https://doi.org/10.1016/j.brainresbull.2013.06.001.CrossRefPubMedGoogle Scholar
  129. Xu Z, Poidevin M, Li X, Li Y, Shu L, Nelson DL, et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci U S A. 2013;110(19):7778–83.  https://doi.org/10.1073/pnas.1219643110.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Yamanaka Y, Faghihi MA, Magistri M, Alvarez-Garcia O, Lotz M, Wahlestedt C. Antisense RNA controls LRP1 sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep. 2015;11(6):967–76.  https://doi.org/10.1016/j.celrep.2015.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Yang JH, Li JH, Jiang S, Zhou H, Qu LH. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 2013;41(Database issue):D177–87.  https://doi.org/10.1093/nar/gks1060.CrossRefPubMedGoogle Scholar
  132. Yang H, Shang D, Xu Y, Zhang C, Feng L, Sun Z, et al. The LncRNA connectivity map: using LncRNA signatures to connect small molecules, LncRNAs, and diseases. Sci Rep. 2017;7(1):6655.  https://doi.org/10.1038/s41598-017-06897-3.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Young RS, Marques AC, Tibbit C, Haerty W, Bassett AR, Liu JL, Ponting CP. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biol Evol. 2012;4(4):427–42.  https://doi.org/10.1093/gbe/evs020.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525(7567):56–61.  https://doi.org/10.1038/nature14973.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, et al. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 2016;44(D1):D203–8.  https://doi.org/10.1093/nar/gkv1252.CrossRefPubMedGoogle Scholar
  136. Zhou X, Xu J. Identification of Alzheimer’s disease-associated long noncoding RNAs. Neurobiol Aging. 2015;36(11):2925–31.  https://doi.org/10.1016/j.neurobiolaging.2015.07.015.CrossRefPubMedGoogle Scholar
  137. Zhou H, Hu H, Lai M. Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell. 2010;102(12):645–55.  https://doi.org/10.1042/BC20100029.CrossRefPubMedGoogle Scholar
  138. Zhou KR, Liu S, Sun WJ, Zheng LL, Zhou H, Yang JH, Qu LH. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017;45(D1):D43–50.  https://doi.org/10.1093/nar/gkw965.CrossRefPubMedGoogle Scholar
  139. Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A. 2013;110(51):E4968–77.  https://doi.org/10.1073/pnas.1315438110.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Luca Lo Piccolo
    • 1
  1. 1.Department of NeurotherapeuticsOsaka University Graduate School of Medicine 2-2 YamadaokaSuita OsakaJapan

Personalised recommendations