Advertisement

Adult Intestine Aging Model

  • Koji Takeda
  • Takashi Okumura
  • Kiichiro Taniguchi
  • Takashi Adachi-YamadaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1076)

Abstract

The Drosophila adult has an intestine composed of a series of differentiated cells and tissue stem cells, all of which are similar to the mammalian intestinal cells. The aged adult intestine shows apparent characteristics such as multilayering of absorptive cells, misexpression of cell type-specific genes, and hyperproliferation of stem cells. Recent studies have revealed various gene networks responsible for progression of these aged phenotypes. The molecular mechanism for senescence of the Drosophila adult midgut and its relation with the corresponding mechanism in mammals are overviewed. In addition, a basic method for observing aged phenotypes of the midgut is described.

Keywords

Drosophila Midgut ISCs Senescence Dl JNK Upd Integrin AstA Dh31 

References

  1. Adachi-Yamada T, Fujimura-Kamada K, Nishida Y, Matsumoto K. Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature. 1999a;400(6740):166–9.  https://doi.org/10.1038/22112.CrossRefPubMedGoogle Scholar
  2. Adachi-Yamada T, Nakamura M, Irie K, Tomoyasu Y, Sano Y, Mori E, Goto S, Ueno N, Nishida Y, Matsumoto K. p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis. Mol Cell Biol. 1999b;19(3):2322–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bagowski CP, Besser J, Frey CR, Ferrell JE Jr. The JNK cascade as a biochemical switch in mammalian cells: ultrasensitive and all-or-none responses. Curr Biol CB. 2003;13(4):315–20.CrossRefPubMedGoogle Scholar
  4. Balakireva M, Stocker RF, Gendre N, Ferveur JF. Voila, a new Drosophila courtship variant that affects the nervous system: behavioral, neural, and genetic characterization. J Neurosci. 1998;18(11):4335–43.CrossRefPubMedGoogle Scholar
  5. Beehler-Evans R, Micchelli CA. Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development. 2015;142(4):654–64.  https://doi.org/10.1242/dev.114959.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Biteau B, Hochmuth CE, Jasper H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell. 2008;3(4):442–55.  https://doi.org/10.1016/j.stem.2008.07.024.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bloom SR, Polak JM. Gut hormones. Adv Clin Chem. 1980;21:177–244.CrossRefPubMedGoogle Scholar
  8. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 2009;23(19):2333–44.  https://doi.org/10.1101/gad.1827009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buchon N, Osman D, David FP, Fang HY, Boquete JP, Deplancke B, Lemaitre B. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 2013;3(5):1725–38.  https://doi.org/10.1016/j.celrep.2013.04.001.CrossRefPubMedGoogle Scholar
  10. Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA. Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell. 2008;7(3):318–34.  https://doi.org/10.1111/j.1474-9726.2008.00380.x.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cordero JB, Stefanatos RK, Scopelliti A, Vidal M, Sansom OJ. Inducible progenitor-derived wingless regulates adult midgut regeneration in Drosophila. EMBO J. 2012;31(19):3901–17.  https://doi.org/10.1038/emboj.2012.248.CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Loof A, Schoofs L. Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources. Comp Biochem Physiol B Comp Biochem. 1990;95(3):459–68.CrossRefGoogle Scholar
  13. Endo Y, Iwanaga T, Fujita T. Gut endocrine cells of invertebrates. Prog Clin Biol Res. 1990;342:499–503.PubMedGoogle Scholar
  14. Fang HY, Martinez-Arias A, de Navascués J (2016) Autocrine and paracrine Wingless signalling in the Drosophila midgut by both continuous gradient and asynchronous bursts of Wingless expression. F1000Research 5:317. doi: https://doi.org/10.12688/f1000research.8170.1.CrossRefGoogle Scholar
  15. Fujita T, Kanno T, Kobayashi S. The Paraneuron. Tokyo: Springer; 2012.Google Scholar
  16. Goulas S, Conder R, Knoblich JA. The par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell. 2012;11(4):529–40.  https://doi.org/10.1016/j.stem.2012.06.017.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jiang H, Edgar BA. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development. 2009;136(3):483–93.  https://doi.org/10.1242/dev.026955.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell. 2009;137(7):1343–55.  https://doi.org/10.1016/j.cell.2009.05.014.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell. 2011;8(1):84–95.  https://doi.org/10.1016/j.stem.2010.11.026.CrossRefPubMedGoogle Scholar
  20. Karpowicz P, Perez J, Perrimon N. The hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development. 2010;137(24):4135–45.  https://doi.org/10.1242/dev.060483.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kuwamura M, Maeda K, Adachi-Yamada T. Mathematical modelling and experiments for the proliferation and differentiation of Drosophila intestinal stem cells I. J Biol Dyn. 2010;4(3):248–57.  https://doi.org/10.1080/17513750903045635.CrossRefPubMedGoogle Scholar
  22. Kuwamura M, Maeda K, Adachi-Yamada T. Mathematical modelling and experiments for the proliferation and differentiation of Drosophila intestinal stem cells II. J Biol Dyn. 2012;6:267–76.  https://doi.org/10.1080/17513758.2011.560290.CrossRefPubMedGoogle Scholar
  23. Li H, Qi Y, Jasper H. Preventing age-related decline of gut compartmentalization limits microbiota Dysbiosis and extends lifespan. Cell Host Microbe. 2016;19(2):240–53.  https://doi.org/10.1016/j.chom.2016.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lin G, Xu N, Xi R. Paracrine wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature. 2008;455(7216):1119–23.  https://doi.org/10.1038/nature07329.CrossRefPubMedGoogle Scholar
  25. Lin G, Zhang X, Ren J, Pang Z, Wang C, Xu N, Xi R. Integrin signaling is required for maintenance and proliferation of intestinal stem cells in Drosophila. Dev Biol. 2013;377(1):177–87.  https://doi.org/10.1016/j.ydbio.2013.01.032.CrossRefPubMedGoogle Scholar
  26. Maeda K, Takemura M, Umemori M, Adachi-Yamada T. E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure notch signaling in adult Drosophila midgut. Genes Cells Devoted Mol Cell Mech. 2008;13(12):1219–27.  https://doi.org/10.1111/j.1365-2443.2008.01239.x.CrossRefGoogle Scholar
  27. Man AL, Bertelli E, Rentini S, Regoli M, Briars G, Marini M, Watson AJ, Nicoletti C. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci (London, England: 1979). 2015;129(7):515–27.  https://doi.org/10.1042/cs20150046.CrossRefGoogle Scholar
  28. Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, Martinez-Arias A. Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 1998;12(4):557–70.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Micchelli CA, Perrimon N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature. 2006;439(7075):475–9.  https://doi.org/10.1038/nature04371.CrossRefPubMedGoogle Scholar
  30. Mitsuoka T. Intestinal flora and human health. Asia Pac J Clin Nutr. 1996;5(1):2–9.PubMedGoogle Scholar
  31. Nalapareddy K, Nattamai KJ, Kumar RS, Karns R, Wikenheiser-Brokamp KA, Sampson LL, Mahe MM, Sundaram N, Yacyshyn MB, Yacyshyn B, Helmrath MA, Zheng Y, Geiger H. Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep. 2017;18(11):2608–21.  https://doi.org/10.1016/j.celrep.2017.02.056.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ohlstein B, Spradling A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature. 2006;439(7075):470–4.  https://doi.org/10.1038/nature04333.CrossRefPubMedGoogle Scholar
  33. Okumura T, Takeda K, Taniguchi K, Adachi-Yamada T. Betanu integrin inhibits chronic and high level activation of JNK to repress senescence phenotypes in Drosophila adult midgut. PLoS One. 2014;9(2):e89387.  https://doi.org/10.1371/journal.pone.0089387.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Okumura T, Takeda K, Kuchiki M, Akaishi M, Taniguchi K, Adachi-Yamada T. GATAe regulates intestinal stem cell maintenance and differentiation in Drosophila adult midgut. Dev Biol. 2016;410(1):24–35.  https://doi.org/10.1016/j.ydbio.2015.12.017.CrossRefPubMedGoogle Scholar
  35. Patel PH, Dutta D, Edgar BA. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol. 2015;17(9):1182–92.  https://doi.org/10.1038/ncb3214.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Perdigoto CN, Schweisguth F, Bardin AJ. Distinct levels of notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development. 2011;138(21):4585–95.  https://doi.org/10.1242/dev.065292.CrossRefPubMedGoogle Scholar
  37. Regan JC, Brandao AS, Leitao AB, Mantas Dias AR, Sucena E, Jacinto A, Zaidman-Remy A. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog. 2013;9(10):e1003720.  https://doi.org/10.1371/journal.ppat.1003720.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development. 2010;137(24):4147–58.  https://doi.org/10.1242/dev.052506.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Takeda K, Okumura T, Terahata M, Yamaguchi M, Taniguchi K, Adachi-Yamada T. Drosophila peptide hormones Allatostatin a and diuretic hormone 31 with complementary gradient distribution in posterior midgut antagonistically regulate midgut senescence and adult lifespan. Zool Sci in press. 2018.  https://doi.org/10.2108/zs170099.
  40. Wang MC, Bohmann D, Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell. 2003;5(5):811–6.CrossRefPubMedGoogle Scholar
  41. Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell. 2005;121(1):115–25.  https://doi.org/10.1016/j.cell.2005.02.030.CrossRefPubMedGoogle Scholar
  42. Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R. EGFR, wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol. 2011;354(1):31–43.  https://doi.org/10.1016/j.ydbio.2011.03.018.CrossRefPubMedGoogle Scholar
  43. Zeng X, Chauhan C, Hou SX. Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in drosophila. Genesis (New York, NY: 2000). 2010;48(10):607–11.  https://doi.org/10.1002/dvg.20661.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Koji Takeda
    • 1
  • Takashi Okumura
    • 1
  • Kiichiro Taniguchi
    • 1
  • Takashi Adachi-Yamada
    • 1
    Email author
  1. 1.Department of Life Science, Faculty of ScienceGakushuin UniversityTokyoJapan

Personalised recommendations