Super-Resolution Fluorescence Microscopy for Single Cell Imaging

  • Han Feng
  • Xiaobo WangEmail author
  • Zhiwei Xu
  • Xiaoju Zhang
  • Yongju Gao
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)


In the past two decades, super-resolution fluorescence microscopy has undergone a dynamic evolution. Following proof-of-concept studies with stimulated emission depletion (STED) microscopy, several new approaches such as structured illumination microscopy (SIM), photoactivation localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), have been developed for imaging of nanoscale structural details and fast cellular dynamics in biological research. In this chapter, after briefly explaining their principles, we will describe the recent application of these super-resolution techniques in single cell imaging. In addition, the extension of super-resolution microscopy to 3D, multicolor, live-cell imaging and multimodal imaging are also discussed, significantly improving the precision of single cell imaging. Combining with molecular biology, biochemistry and bio-computing algorithms, super-resolution fluorescence microscopy continues to expand its capabilities and provide comprehensive insights into the details of single cells.


STED microscopy SIM PALM STORM Single cell imaging 



The authors gratefully appreciate the support from the National Natural Science Foundation of China (No.81472835 and 81670091) and the National Key Clinical Specialist Construction Programs of China (2013-544).

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zheng XT, Li CM (2012) Single cell analysis at the nanoscale. Chem Soc Rev 41(6):2061–2071CrossRefPubMedGoogle Scholar
  2. 2.
    Armbrecht L, Dittrich PS (2017) Recent advances in the analysis of single cells. Anal Chem 89(1):2–21CrossRefPubMedGoogle Scholar
  3. 3.
    Sousa AA, Leapman RD (2012) Development and application of STEM for the biological sciences. Ultramicroscopy 123:38–49CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Milne JL, Borgnia MJ, Bartesaghi A, Tran EE, Earl LA, Schauder DM et al (2013) Cryo-electron microscopy-a primer for the non-microscopist. FEBS J 280(1):28–45CrossRefPubMedGoogle Scholar
  5. 5.
    Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616):82–86CrossRefPubMedGoogle Scholar
  6. 6.
    Abbe E (1873) Beitrage zur Theorie des mikroskops und der mikroskopischen wahrnehmung. Arch Mikroskop Anat 9:413–420CrossRefGoogle Scholar
  7. 7.
    Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA et al (2013) Single cell optical imaging and spectroscopy. Chem Rev 113(4):2469–2527CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fornasiero EF, Opazo F (2015) Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. BioEssays 37(4):436–451CrossRefPubMedGoogle Scholar
  10. 10.
    Stone MB, Shelby SA, Veatch SL (2017) Super-resolution microscopy: shedding light on the cellular plasma membrane. Chem Rev 117(11):7457–7477CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Betzig E (2015) Single molecules, cells, and super-resolution optics (Nobel Lecture). Angew Chem Int Ed 54(28):8034–8053CrossRefGoogle Scholar
  12. 12.
    Moerner WE (2015) Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel Lecture). Angew Chem Int Ed 54(28):8067–8093CrossRefGoogle Scholar
  13. 13.
    Hell SW (2015) Nanoscopy with focused light (Nobel Lecture). Angew Chem Int Ed 54(28):8054–8066CrossRefGoogle Scholar
  14. 14.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782CrossRefPubMedGoogle Scholar
  15. 15.
    Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956CrossRefPubMedGoogle Scholar
  16. 16.
    Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939CrossRefPubMedGoogle Scholar
  17. 17.
    Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A et al (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312(5776):1051–1054CrossRefPubMedGoogle Scholar
  18. 18.
    Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, Donnert G et al (2007) Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317(5841):1072–1076CrossRefPubMedGoogle Scholar
  19. 19.
    Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103(31):11440–11445CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kellner RR, Baier CJ, Willig KI, Hell SW, Barrantes FJ (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144(1):135–143CrossRefPubMedGoogle Scholar
  21. 21.
    Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 104(7):2471–2476CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schneider A, Rajendran L, Honsho M, Gralle M, Donnert G, Wouters F et al (2008) Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 28(11):2874–2882CrossRefPubMedGoogle Scholar
  23. 23.
    Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249CrossRefPubMedGoogle Scholar
  24. 24.
    Lukinavičius G, Reymond L, D'Este E, Masharina A, Göttfert F, Ta H et al (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11(7):731–733CrossRefPubMedGoogle Scholar
  25. 25.
    Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell SW et al (2014) Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun 5:5412CrossRefPubMedGoogle Scholar
  26. 26.
    D’Este E, Kamin D, Göttfert F, El-Hady A, Hell SW (2015) STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep 10(8):1246–1251CrossRefPubMedGoogle Scholar
  27. 27.
    Liu Y, Lu Y, Yang X, Zheng X, Wen S, Wang F et al (2017) Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543(7644):229–233CrossRefPubMedGoogle Scholar
  28. 28.
    Erdmann RS, Takakura H, Thompson AD, Rivera-Molina F, Allgeyer ES, Bewersdorf J et al (2014) Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angew Chem Int Ed 53(38):10242–10246CrossRefGoogle Scholar
  29. 29.
    Hanne J, Falk HJ, Görlitz F, Hoyer P, Engelhardt J, Sahl SJ et al (2015) STED nanoscopy with fluorescent quantum dots. Nat Commun 6:7127CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87CrossRefPubMedGoogle Scholar
  31. 31.
    Heintzmann R, Cremer CG (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568:185–196CrossRefGoogle Scholar
  32. 32.
    Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957–4970CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy-a concept for optical resolution improvement. J Opt Soc Am A Opt Image Sci Vis 19(8):1599–1609CrossRefPubMedGoogle Scholar
  34. 34.
    York AG, Parekh SH, Dalle Nogare D, Fischer RS, Temprine K, Mione M et al (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9(7):749–754CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Olshausen PV, Defeu Soufo HJ, Wicker K, Heintzmann R, Graumann PL, Rohrbach A (2013) Super-resolution imaging of dynamic MreB filaments in B. subtilis-a multiple-motor-driven transport? Biophys J 105(5):1171–1181CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P et al (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shao L, Kner P, Rego EH, Gustafsson MG (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8(12):1044–1046CrossRefPubMedGoogle Scholar
  38. 38.
    Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MG (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci U S A 109(14):5311–5315CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6(5):339–342CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N et al (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109(3):135–143CrossRefGoogle Scholar
  42. 42.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645CrossRefPubMedGoogle Scholar
  43. 43.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176CrossRefGoogle Scholar
  46. 46.
    Lee HL, Lord SJ, Iwanaga S, Zhan K, Xie H, Williams JC et al (2010) Super-resolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J Am Chem Soc 132(43):15099–15101CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fölling J, Belov V, Kunetsky R, Medda R, Schönle A, Egner A et al (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed 46(33):6266–6270CrossRefGoogle Scholar
  48. 48.
    Lee MK, Rai P, Williams J, Twieg RJ, Moerner WE (2014) Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. J Am Chem Soc 136(40):14003–14006CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Grimm JB, Sung AJ, Legant WR, Hulamm P, Matlosz SM, Betzig E et al (2013) Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes. ACS Chem Biol 8(6):1303–1310CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tian Z, Li AD, Hu D (2011) Super-resolution fluorescence nanoscopy applied to imaging core-shell photoswitching nanoparticles and their self-assemblies. Chem Commun 47(4):1258–1260CrossRefGoogle Scholar
  51. 51.
    Zhang H, Wang C, Jiang T, Guo H, Wang G, Cai X et al (2015) Microtubule-targetable fluorescent probe: site-specific detection and super-resolution imaging of ultratrace tubulin in microtubules of living cancer cells. Anal Chem 87(10):5216–5222CrossRefPubMedGoogle Scholar
  52. 52.
    Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908CrossRefGoogle Scholar
  55. 55.
    Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5(2):132–139CrossRefPubMedGoogle Scholar
  56. 56.
    Uno SN, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan MC et al (2014) A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem 6(8):681–689CrossRefPubMedGoogle Scholar
  57. 57.
    Gu X, Zhao E, Lam JW, Peng Q, Xie Y, Zhang Y et al (2015) Mitochondrion-specific live-cell bioprobe operated in a fluorescence turn-on manner and a well-designed photoactivatable mechanism. Adv Mater 27(44):7093–7100CrossRefPubMedGoogle Scholar
  58. 58.
    Gu X, Zhao E, Zhao T, Kang M, Gui C, Lam JW et al (2016) A mitochondrion-specific photoactivatable fluorescence turn-pn AIE-based bioprobe for localization super-resolution microscope. Adv Mater 28(25):5064–5071CrossRefPubMedGoogle Scholar
  59. 59.
    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S (2010) Achieving increased resolution and more pixels with super-resolution optical fluctuation imaging (SOFI). Opt Express 18(18):18875–18885CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dedecker P, Mo GC, Dertinger T, Zhang J (2012) Widely accessible method for super-resolution fluorescence imaging of living systems. Proc Natl Acad Sci U S A 109(27):10909–10914CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Dertinger T, Heilemann M, Vogel R, Sauer M, Weiss S (2010) Super-resolution optical fluctuation imaging with organic dyes. Angew Chem Int Ed 49(49):9441–9443CrossRefGoogle Scholar
  63. 63.
    Zhang X, Chen X, Zeng Z, Zhang M, Sun Y, Xi P et al (2015) Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI). ACS Nano 9(3):2659–2667CrossRefPubMedGoogle Scholar
  64. 64.
    Chen X, Li R, Liu Z, Sun K, Sun Z, Chen D et al (2017) Small photoblinking semiconductor polymer dots for fluorescence nanoscopy. Adv Mater.
  65. 65.
    Zeng Z, Chen X, Wang H, Huang N, Shan C, Zhang H et al (2015) Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging. Sci Rep 5:8359CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kisley L, Brunetti R, Tauzin LJ, Shuang B, Yi X, Kirkeminde AW et al (2015) Characterization of porous materials by fluorescence correlation spectroscopy super-resolution optical fluctuation imaging. ACS Nano 9(9):9158–9166CrossRefPubMedGoogle Scholar
  67. 67.
    Godin AG, Lounis B, Cognet L (2014) Super-resolution microscopy approaches for live cell imaging. Biophys J 107(8):1777–1784CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hauser M, Wojcik M, Kim D, Mahmoudi M, Li W, Xu K (2017) Correlative super-resolution microscopy: new dimensions and new opportunities. Chem Rev 117(11):7428–7456CrossRefPubMedGoogle Scholar
  69. 69.
    Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1):80–84CrossRefPubMedGoogle Scholar
  70. 70.
    Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584CrossRefPubMedGoogle Scholar
  71. 71.
    Opazo F, Levy M, Byrom M, Schäfer C, Geisler C, Groemer TW et al (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9(10):938–939CrossRefPubMedGoogle Scholar
  72. 72.
    Deschout H, Cella Zanacchi F, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess ST et al (2014) Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods 11(3):253–266CrossRefPubMedGoogle Scholar
  73. 73.
    Klein T, Löschberger A, Proppert S, Wolter S, van de Linde S, Sauer M (2012) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8(1):7–9CrossRefGoogle Scholar
  74. 74.
    Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW et al (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7(9):717–719CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Han Feng
    • 1
  • Xiaobo Wang
    • 2
    • 3
    Email author
  • Zhiwei Xu
    • 3
  • Xiaoju Zhang
    • 3
    • 4
  • Yongju Gao
    • 2
  1. 1.Department of PharmacyHenan Provincial People’s Hospital, and People’s Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Nuclear MedicineHenan Provincial People’s Hospital, and People’s Hospital of Zhengzhou UniversityZhengzhouChina
  3. 3.Clinical Research Service CenterHenan Provincial People’s Hospital, and People’s Hospital of Zhengzhou UniversityZhengzhouChina
  4. 4.Department of Respiratory MedicineHenan Provincial People’s Hospital, and People’s Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations