Advertisement

The Significance of Single-Cell Biomedicine in Stem Cells

  • Weishan Zhuge
  • Furong Yan
  • Zhitu Zhu
  • Xiangdong WangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)

Abstract

Clinical application of stem cells (SCs) progresses significantly in the treatment of a large number of diseases, e.g. leukemia, respiratory diseases, kidney disease, cerebral palsy, autism, or autoimmune diseases. Of those, the population, biological phenotypes, and functions of individual SCs are mainly concerned, due to the lack of cell separation and purification processes. The single-cell technology, including microfluidic technology and single-cell genome amplification technology, is widely used to study SCs and gains some recognitions. The present review will address the importance of single-cell technologies in the recognition and heterogeneity of SCs and highlight the significance of current single-cell approaches in the understanding of SC phenotypes. We also discuss the values of single-cell studies to overcome the bottleneck in explore of biological mechanisms and reveal the therapeutic potentials of SCs in diseases, especially tumor-related diseases, as new diagnostic and therapeutic strategies

Keywords

Single-cell technology Stem cell Tumor Heterogeneity Microfluidics 

References

  1. 1.
    Barker RA, Parmar M, Studer L, Takahashi J (2017 Nov 2) Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: Dawn of a new era. Cell Stem Cell 21(5):569–573.  https://doi.org/10.1016/j.stem.2017.09.014CrossRefPubMedGoogle Scholar
  2. 2.
    Devine H, Patani R (2017) The translational potential of human induced pluripotent stem cells for clinical neurology: the translational potential of hiPSCs in neurology. Cell Biol Toxicol 33(2):129–144CrossRefPubMedGoogle Scholar
  3. 3.
    Kumar D, Anand T, Kues WA (2017) Clinical potential of human-induced pluripotent stem cells: perspectives of induced pluripotent stem cells. Cell Biol Toxicol 33(2):99–112CrossRefPubMedGoogle Scholar
  4. 4.
    Paes BCMF, Moço PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ et al (2017) Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol 33(3):233–250.  https://doi.org/10.1007/s10565-016-9377-2CrossRefPubMedGoogle Scholar
  5. 5.
    Ema H, Morita Y, Suda T (2014) Heterogeneity and hierarchy of hematopoietic stem cells. Exp Hematol 42(2):74–82.e2.  https://doi.org/10.1016/j.exphem.2013.11.004CrossRefPubMedGoogle Scholar
  6. 6.
    Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R et al (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453):236–240.  https://doi.org/10.1038/nature12172CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375.  https://doi.org/10.1038/nature13173CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH et al (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32(10):1053–1058.  https://doi.org/10.1038/nbt.2967CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR (2016) Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18(5):591–596.  https://doi.org/10.1016/j.stem.2016.03.012CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W et al (2015) Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161(5):1175–1186.  https://doi.org/10.1016/j.cell.2015.04.001CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yin Z, Hu JJ, Yang L, Zheng ZF, An CR, Wu BB et al (2016) Single-cell analysis reveals a nestin+ tendon stem/progenitor cell population with strong tenogenic potentiality. Sci Adv 2(11):e1600874.  https://doi.org/10.1126/sciadv.1600874CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gracz AD, Williamson IA, Roche KC, Johnston MJ, Wang F, Wang Y et al (2015) A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nat Cell Biol 17(3):340–349.  https://doi.org/10.1038/ncb3104CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kim TH, Saadatpour A, Guo G, Saxena M, Cavazza A, Desai N et al (2016) Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5(+) intestinal stem cells. Cell Rep 16(8):2053–2060.  https://doi.org/10.1016/j.celrep.2016.07.056CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vicinanza C, Aquila I, Scalise M, Cristiano F, Marino F, Cianflone E et al (2017) Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death Differ 24(12):2101–2116.  https://doi.org/10.1038/cdd.2017.130CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C (2012) Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells. Differentiation 83(1):10–16.  https://doi.org/10.1016/j.diff.2011.08.008CrossRefPubMedGoogle Scholar
  16. 16.
    Yang Z, Li C, Fan Z, Liu H, Zhang X, Cai Z et al (2017) Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder Cancer stem cells. Eur Urol 71(1):8–12.  https://doi.org/10.1016/j.eururo.2016.06.025CrossRefPubMedGoogle Scholar
  17. 17.
    Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321.  https://doi.org/10.1016/j.stem.2014.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O et al (2011) Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9(4):357–365.  https://doi.org/10.1016/j.stem.2011.08.010CrossRefPubMedGoogle Scholar
  19. 19.
    Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5:4250.  https://doi.org/10.1038/ncomms5250CrossRefPubMedGoogle Scholar
  20. 20.
    Wang X (2016) New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol 32(5):359–361.  https://doi.org/10.1007/s10565-016-9350-0CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shi L, Zhu B, Xu M, Wang X (2017) Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol 34:109.  https://doi.org/10.1007/s10565-017-9405-xCrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen C, Shi L, Li Y, Wang X, Yang S (2016) Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol 32(3):169–184.  https://doi.org/10.1007/s10565-016-9322-4CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gu J, Wang X (2016) New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol 32(1):1–3.  https://doi.org/10.1007/s10565-016-9313-5CrossRefPubMedGoogle Scholar
  24. 24.
    Wang W, Zhu B, Wang X (2017) Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol 33(5):423–427.  https://doi.org/10.1007/s10565-017-9400-2CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mossoba ME, Flynn TJ, Vohra S, Wiesenfeld PL, Sprando RL (2015) Human kidney proximal tubule cells are vulnerable to the effects of Rauwolfia serpentina. Cell Biol Toxicol 31(6):285–293.  https://doi.org/10.1007/s10565-016-9311-7CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu Z, Qiu S, Shao K, Hou Y (2017) Progress and challenges of sequencing and analyzing circulating tumor cells. Cell Biol Toxicol.  https://doi.org/10.1007/s10565-017-9418-5
  27. 27.
    Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, Xue Y, Wu D (2016) A new method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol 32(4):323–332.  https://doi.org/10.1007/s10565-016-9337-xCrossRefPubMedGoogle Scholar
  28. 28.
    Xu M, Wang X (2017) Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol 33(4):361–371.  https://doi.org/10.1007/s10565-017-9393-xCrossRefPubMedGoogle Scholar
  29. 29.
    Wang X (2016) CBT profiles of cabozantinib approved for advanced renal cell carcinomas. Cell Biol Toxicol 32(4):259–261.  https://doi.org/10.1007/s10565-016-9349-6CrossRefPubMedGoogle Scholar
  30. 30.
    Bao L, Zhang Y, Wang J, Wang H, Dong N, Su X, Xu M, Wang X (2016) Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer. Cell Biol Toxicol 32(5):419–435.  https://doi.org/10.1007/s10565-016-9343-zCrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lin C, Chen S, Li Y (2017) T cell modulation in immunotherapy for hematological malignancies. Cell Biol Toxicol 33(4):323–327.  https://doi.org/10.1007/s10565-017-9397-6CrossRefPubMedGoogle Scholar
  32. 32.
    Shi L, Dong N, Ji D, Huang X, Ying Z, Wang X, Chen C (2017) Lipopolysaccharide-induced CCN1 production enhances interleukin-6 secretion in bronchial epithelial cells. Cell Biol Toxicol 34:39.  https://doi.org/10.1007/s10565-017-9401-1CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Arumugam P, Samson A, Ki J, Song JM (2017) Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol 33(3):307–321.  https://doi.org/10.1007/s10565-016-9378-1CrossRefPubMedGoogle Scholar
  34. 34.
    Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K et al (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526(7571):131–135.  https://doi.org/10.1038/nature15260CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Devine H, Patani R (2017) The translational potential of human induced pluripotent stem cells for clinical neurology: the translational potential of hiPSCs in neurology. Cell Biol Toxicol 33(2):129–144.  https://doi.org/10.1007/s10565-016-9372-7CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Weishan Zhuge
    • 1
  • Furong Yan
    • 2
  • Zhitu Zhu
    • 3
  • Xiangdong Wang
    • 1
    Email author
  1. 1.Zhongshan Hospital Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
  2. 2.Department of Respiratory Pulmonary and Critical Care MedicineThe Second Hospital of Fujian Medical UniversityQuanzhouChina
  3. 3.The First Hospital of Jinzhou Medical UniversityJinZhouChina

Personalised recommendations