Application of Single Cell Sequencing in Cancer

  • Lan Yu
  • Hua Zhao
  • Li Meng
  • Cuilian Zhang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)


Cancer is a heterogenetic disease at both the level of clinical manifestation and the level of the genome. Single-cell sequencing provides an unprecedented means of characterizing the intra-tumor heterogeneity and detecting and analyzing the genomes of cancer cells. These data will help to reconstruct the understanding of the evolutionary lineage of cancer cells. In the future, single-cell technology is believed to be a useful tool in diagnostic and prognostic application in oncology. The application of single cell technology in clinics will make it possible to detect cancer non-invasively at early stages and to develop precision medicine. In this chapter, we review the research and application status of the single cell technology in cancer.


Single cell sequencing Cancer Heterogeneity Circulation tumor cells 



We are grateful to the president of the hospital, Jianqin Gu, Professor Xiangdong Wang, Professor Cuilian Zhang, and Professor Li Meng for providing valuable guidance in every stage of the writing of this chapter and to our colleagues for providing support and advice.


  1. 1.
    Wang J, Song Y (2017) Single cell sequencing: a distinct new field. Clin Transl Med 6(1):10CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Coskun AF, Eser U, Islam S (2016) Cellular identity at the single-cell level. Mol BioSyst 12(10):2965CrossRefPubMedGoogle Scholar
  3. 3.
    Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43(7):553CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Navin N, Hicks J (2011) Future medical applications of single-cell sequencing in cancer. Genome Med 3(5):1–12CrossRefGoogle Scholar
  5. 5.
    Schmidt F, Efferth T (2016) Tumor heterogeneity, single-cell sequencing, and drug resistance. Pharmaceuticals 9(2):33CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ellsworth DL, Blackburn HL, Shriver CD et al (2017) Single-cell sequencing and tumorigenesis: improved understanding of tumor evolution and metastasis. Clin Transl Med 6(1):15CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bedard PL, Hansen AR, Ratain MJ et al (2013) Tumor heterogeneity in the clinic. Nature 501(7467):355–364CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nicholas CR, Gaur M, Wang S et al (2007) A method for single-cell sorting and expansion of genetically modified human embryonic stem cells. Stem Cells Dev 16(1):109–117CrossRefPubMedGoogle Scholar
  9. 9.
    Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584CrossRefPubMedGoogle Scholar
  10. 10.
    Guo G, Luc S, Marco E et al (2013) Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 13(4):492CrossRefPubMedGoogle Scholar
  11. 11.
    Guo G, Huss M, Guo QT et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18(4):675CrossRefPubMedGoogle Scholar
  12. 12.
    Buganim Y, Faddah DA, Cheng AW et al (2012) Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150(6):1209CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dalerba P, Kalisky T, Sahoo D et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Moignard V, Macaulay IC, Swiers G (2013) Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 15(4):363–372CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Behbehani GK, Bendall SC, Clutter MR et al (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81A(7):552CrossRefGoogle Scholar
  17. 17.
    Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377CrossRefPubMedGoogle Scholar
  18. 18.
    Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64CrossRefPubMedGoogle Scholar
  19. 19.
    Elad A, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545CrossRefGoogle Scholar
  20. 20.
    Marco E, Karp RL, Guo G et al (2014) Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci U S A 111(52):E5643CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Moignard V, Woodhouse S, Haghverdi L et al (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 33(3):269CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tsoucas D, Yuan GC (2017) Recent progress in single-cell cancer genomics. Curr Opin Genet Dev 42:22–32CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319CrossRefPubMedGoogle Scholar
  25. 25.
    Saadatpour A, Lai S, Guo G et al (2015) Single-cell analysis in Cancer genomics. Trends Genet Tig 31(10):576CrossRefPubMedGoogle Scholar
  26. 26.
    Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang Y, Waters J, Leung ML et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512(7513):155CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gao R, Davis A, Mcdonald TO et al (2016) Punctuated copy number evolution and clonal stasis in triple-negative breast Cancer. Nat Genet 48(10):1119CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Baslan T, Kendall J, Ward B et al (2015) Optimizing sparse sequencing of single cells for highly multiplex copy number profiling. Genome Res:25(5)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nguyen A, Yoshida M, Goodarzi H et al (2016) Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. Nat Commun 7:11246CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee MC, Lopez-Diaz FJ, Khan SY et al (2014) Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci U S A 111(44):E4726CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Winterhoff BJ, Maile M, Mitra AK et al (2017) Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells. Gynecol Oncol 144(3):598–606CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Malecki M, Szybalski W (2012) Isolation of single, intact chromosomes from single, selected ovarian cancer cells for in situ hybridization and sequencing. Gene 493(1):132CrossRefPubMedGoogle Scholar
  34. 34.
    Min JW, Kim WJ, Han JA et al (2015) Identification of distinct tumor subpopulations in lung adenocarcinoma via single-cell RNA-seq. PLoS One 10(8):e0135817CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim KT, Lee HW, Lee HO et al (2015) Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol 16(1):1–15CrossRefGoogle Scholar
  36. 36.
    Hughes AE, Magrini V, Demeter R et al (2014) Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet 10(7):e1004462CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gawad C, Koh W, Quake SR (2014) Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci U S A 111(50):17947–17952CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bjorn B, Aaron T, Belderbos ME et al (2016) Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biol 17(1):115CrossRefGoogle Scholar
  39. 39.
    Xu X, Hou Y, Yin X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895CrossRefPubMedGoogle Scholar
  40. 40.
    Francis JM, Zhang CZ, Maire CL et al (2014) EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov 4(8):956CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen XX, Bai F (2015) Single-cell analyses of circulating tumor cells. Cancer Biol Med 12(3):184–192PubMedPubMedCentralGoogle Scholar
  43. 43.
    Yu M, Stott S, Toner M et al (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192(3):373–382CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tan SJ, Yeo T, Sukhatme SA et al (2017) Personalized treatment through detection and monitoring of genetic aberrations in single circulating tumor cells. Adv Exp Med Biol 994:255CrossRefPubMedGoogle Scholar
  45. 45.
    Ni X, Zhuo M, Su Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci U S A 110(52):21083–21088CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jiang R, Lu YT, Hao H et al (2015) A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget 6(42):44781–44793PubMedPubMedCentralGoogle Scholar
  47. 47.
    Lohr JG, Adalsteinsson VA, Cibulskis K et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32(5):479–484CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Solakoglu O, Maierhofer C, Lahr G et al (2002) Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc Natl Acad Sci U S A 99(4):2246–2251CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kraus J, Pantel K, Pinkel D et al (2003) High-resolution genomic profiling of occult micrometastatic tumor cells. Genes Chromosomes Cancer 36(2):159–166CrossRefPubMedGoogle Scholar
  50. 50.
    Gangnus R, Langer S, Breit E et al (2004) Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin Cancer Res 10(10):3457CrossRefPubMedGoogle Scholar
  51. 51.
    Heitzer E, Auer M, Gasch C et al (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73(10):2965–2975CrossRefPubMedGoogle Scholar
  52. 52.
    Luca FD, Rotunno G, Salvianti F et al (2016) Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 7(18):26107–26119PubMedPubMedCentralGoogle Scholar
  53. 53.
    Pestrin M, Salvianti F, Galardi F et al (2015) Heterogeneity of PIK3CA mutational status at the single cell level in circulating tumor cells from metastatic breast cancer patients. Mol Oncol 9(4):749–757CrossRefPubMedGoogle Scholar
  54. 54.
    Fernandez SV, Bingham C, Fittipaldi P et al (2014) TP53 mutations detected in circulating tumor cells present in the blood of metastatic triple negative breast cancer patients. Breast Cancer Res 16(5):445CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Deng G, Krishnakumar S, Powell AA et al (2014) Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer 14(1):456CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Steinert G, Schölch S, Niemietz T et al (2014) Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res 74(6):1694CrossRefPubMedGoogle Scholar
  57. 57.
    Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hiley C, Bruin ECD, Mcgranahan N et al (2014) Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol 15(8):453CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Su KY, Chen HY, Li KC et al (2012) Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol 30(4):433CrossRefPubMedGoogle Scholar
  60. 60.
    Turke AB, Zejnullahu K, Wu YL et al (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17(1):77CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Patel LR, Nykter M, Chen K et al (2013) Cancer genome sequencing: understanding malignancy as a disease of the genome, its conformation, and its evolution. Cancer Lett 340(2):152–160CrossRefPubMedGoogle Scholar
  62. 62.
    Caicedo AS, Aponte PM (2017) Stemness in cancer: stem cells, Cancer stem cells, and their microenvironment. Stem Cells Int 2017:5619472CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wen L, Tang F (2016) Single-cell sequencing in stem cell biology. Genome Biol 17:71CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lawson DA, Bhakta NR, Kessenbrock K et al (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526(7571):131CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Longo DL (2017) Imatinib changed everything. N Engl J Med 376(10):982–983CrossRefPubMedGoogle Scholar
  66. 66.
    Liu JX, Zhang D, Xie X et al (2013) Eaf1 and Eaf2 negatively regulate canonical Wnt/β-catenin signaling. Development 140(5):1067–1078CrossRefPubMedGoogle Scholar
  67. 67.
    Goardon N, Marchi E, Atzberger A et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19(1):138CrossRefPubMedGoogle Scholar
  68. 68.
    Zhao K, Yin LL, Zhao DM et al (2014) IL1RAP as a surface marker for leukemia stem cells is related to clinical phase of chronic myeloid leukemia patients. Int J Clin Exp Med 7(12):4787–4798PubMedPubMedCentralGoogle Scholar
  69. 69.
    Schepers K, Campbell TB, Passegue E (2015) Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16(3):254–267CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Welner RS, Amabile G, Bararia D et al (2015) Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell 27(5):671–681CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Reynaud D, Pietras E, Barryholson K et al (2011) IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20(5):661CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yang Z, Li C, Fan Z et al (2017) Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder Cancer stem cells. Eur Urol 71(1):8CrossRefPubMedGoogle Scholar
  73. 73.
    Lindholm C, Hofer PA, Jonsson H (1990) Single cell DNA cytophotometry in clinical stage I malignant melanoma. Relationship to prognosis. Acta oncol 29(2):147–150CrossRefPubMedGoogle Scholar
  74. 74.
    Heselmeyerhaddad KM, Berroa Garcia LY, Bradley A et al (2014) Single-cell genetic analysis reveals insights into clonal development of prostate cancers and indicates loss of PTEN as a marker of poor prognosis. Am J Pathol 184(10):2671–2686CrossRefGoogle Scholar
  75. 75.
    Cao L, Hu X, Zhang Y et al (2011) Adverse prognosis of clustered-cell versus single-cell micrometastases in pN0 early gastric cancer. J Surg Oncol 103(1):53–56CrossRefPubMedGoogle Scholar
  76. 76.
    Ren SC, Qu M, Sun YH (2013) Investigating intratumour heterogeneity by single-cell sequencing. Asian J Androl 15(6):729CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Adalsteinsson VA, Love JC (2014) Towards engineered processes for sequencing-based analysis of single circulating tumor cells. Curr Opin Chem Eng 4:97–104CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Yardley DA (2013) Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer 2013:137414CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Microcirculation 46(1–3):49–67Google Scholar
  80. 80.
    Wang X (2016) Gene mutation-based and specific therapies in precision medicine. J Cell Mol Med 20(4):577–580CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kim KT, Lee HW, Lee HO et al (2016) Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol 17(1):80CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Mitra AK, Mukherjee UK, Harding T et al (2016) Single-cell analysis of targeted transcriptome (SCATTome) predicts drug sensitivity of single cells within human myeloma tumors. Leukemia 30(5):1094CrossRefPubMedGoogle Scholar
  83. 83.
    Navin NE (2015) Delineating cancer evolution with single-cell sequencing. Sci Transl Med 7(296):296fs29CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bidard FC, Mathiot C, Delaloge S et al (2010) Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann Oncol 21(4):729–733CrossRefPubMedGoogle Scholar
  85. 85.
    Rao C, Bui T, Connelly M et al (2011) Circulating melanoma cells and survival in metastatic melanoma. Int J Oncol 38(3):755PubMedGoogle Scholar
  86. 86.
    Blainey PC (2013) The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37(3):407CrossRefPubMedGoogle Scholar
  87. 87.
    Ning L, Liu G, Li G et al (2014) Current challenges in the bioinformatics of single cell genomics. Front Oncol 4:7CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hodzic E (2016) Single-cell analysis: advances and future perspectives. Bosn J Basic Med Sci 16(4):313–314PubMedPubMedCentralGoogle Scholar
  89. 89.
    Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(2):227–240CrossRefGoogle Scholar
  90. 90.
    Kim KI, Simon R (2014) Using single cell sequencing data to model the evolutionary history of a tumor. Bmc Bioinf 15(1):1–13CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lan Yu
    • 1
  • Hua Zhao
    • 1
  • Li Meng
    • 1
  • Cuilian Zhang
    • 1
  1. 1.The Reproductive Institute of Henan Provincial People’s Hospital/Reproductive Hospital of Henan ProvinceZhengzhouChina

Personalised recommendations