Fungal Endophytes: Role in Sustainable Agriculture

  • Pratibha Vyas
  • Anu Bansal


In view of escalating cost and pollution related with chemical fertilizers and pesticides, interest has increased to find alternative methods of fertilization and control of pests. Fungal endophytes residing symbiotically inside the plant tissues play an important role in the growth promotion and resistance to various biotic and abiotic stresses and diseases in plants. They also produce phytohormones, antimicrobial compounds, and many agrochemical bioactive metabolites. These endophytes hold huge potential to be used as safe and cost-effective alternative to chemical pesticides and fertilizers in view of their wide range of plant growth-promoting activities. The present chapter describes the role of endophytic fungi in the agriculture sector.


Fungal endophytes Sustainable agriculture Phytohormones Plant growth promotion Phosphate solubilization 


  1. Aramsirirujiwet Y, Gumlangmak C, Kitpreechavanich V (2016) Studies on antagonistic effect against plant pathogenic fungi from endophytic fungi isolated from hottuynia cordata thunb. and screening for siderophore and Indole-3-acetic acid production. KKU Res J 21(1):55–66Google Scholar
  2. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654CrossRefPubMedGoogle Scholar
  3. Atugala DM, Deshappriya N (2015) Effect of endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. J Natl Sci Found Sri Lanka 43(2):173–187CrossRefGoogle Scholar
  4. Balbi V, Devoto A (2008) Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318CrossRefPubMedGoogle Scholar
  5. Barka AE, Gognies S, Nowak J, Audran J-C, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142CrossRefGoogle Scholar
  6. Bhagobaty RK, Joshi SR (2012) Enzymatic activity of fungi endophytic on five medicinal plant species of the Pristine sacred forests of Meghalaya, India. Biotechnol Bioprocess Eng 17:33–40CrossRefGoogle Scholar
  7. Bischoff KM, Wicklow DT, Jordan DB, de Rezende ST, Liu S, Hughes SR, Rich JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58:499–503CrossRefPubMedGoogle Scholar
  8. Cai G, Wang X (2012) Isolation, identification and bioactivity of endophytic fungi from medicinal plant Malus sieboldii. ZhongguoZhong Yao ZaZhi 37(5):564–568Google Scholar
  9. Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. Int J Pharm Bio Sci 6:333–343Google Scholar
  11. Clay K, Cheplick GP (1989) Effect of ergot alkaloids from fungal endophyt-infected grasses on fall armyworm (Spodoptera frugiperda). J Chem Ecol 15:169–182CrossRefPubMedGoogle Scholar
  12. Daisy BH, Strobel GA, Castilo U, Ezra D, Scars J, Weaver D et al (2002) Nepthalene- an insect repellent, is produced by Muscodorvitigenus, a novel endophytic fungus. Microbiology 148:3737–3741CrossRefPubMedGoogle Scholar
  13. Demain AL (2000) Microbial natural products: a past with a future. In: Wringley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: a new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 3–16Google Scholar
  14. Doley P, Jha DK (2010) Endophytic fungal assemblages from ethnomedicinal plant Rauwolfia serpentina (L) Benth. J Plant Pathol Microbiol 40(1):44–48Google Scholar
  15. dos Banhos EF, de Souza AQL, de Andrade JC, Souza ADL, Koolen HHF, Albuquerque PM (2014) Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: distribution and bioactivity. Braz J Microbiol 45:153–161CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fernández LA, Zalba P, Gomez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil oils 43:805–809CrossRefGoogle Scholar
  17. Fouda AH, Hassan SED, Eid AM, Ewais EED (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104Google Scholar
  18. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464CrossRefPubMedPubMedCentralGoogle Scholar
  19. Frankenberger WT, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, Inc, NewYork, p 503Google Scholar
  20. Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351Google Scholar
  21. Gautam AK, Kant M, Thakur Y (2013) Isolation of endophytic fungi from Cannabis sativa and study their antifungal potential. Arch Phytopathol Plant Protect 46:627–635CrossRefGoogle Scholar
  22. Giménez C, Cabrera R, Reina M, Coloma-González A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720CrossRefGoogle Scholar
  23. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  24. Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, p 267CrossRefGoogle Scholar
  25. Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am J Altern Agric 1:51–57CrossRefGoogle Scholar
  26. Gutierrez OA, Wubben MJ, Howard M, Roberts B, Hanlon E, Wilkinson JR (2009) The role of phytohormones ethylene and auxin in plant-nematode interactions. Russ J Plant Physiol 56:1–5CrossRefGoogle Scholar
  27. Halford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–239CrossRefGoogle Scholar
  28. Hamayun M, Khan SA, Ahmad N, Tang DS, Kang SM, Na CI, Sohn EY, Hwang YH, Shin DH, Lee BH et al (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632CrossRefGoogle Scholar
  29. Hamill JD (1993) Alterations in auxin and cytokinin metabolism of higher plants due to expression of specific genes from pathogenic bacteria: a review. Aust J Plant Physiol 20:405–423CrossRefGoogle Scholar
  30. Hasan R (1994) Phosphorus fertility status of soils in India. In: Dev G (ed) Phosphorus researches in India. Potash and phosphate of Canada-India Programme, Gurgaon, pp 7–13Google Scholar
  31. He X, Han G, Lin Y, Tian X, Xiang C, Tian Q, Wang F, He Z (2012) Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol Res 27:273–284CrossRefGoogle Scholar
  32. Kajula M, Tejesvi MV, Kolehmainen S, Mäkinen A, Hokkanen J, Mattila S, Pirttilä AM (2010) The siderophore ferricrocin produced by specific foliar endophytic fungi in vitro. Fungal Biol 114:248–254CrossRefPubMedGoogle Scholar
  33. Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011a) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861CrossRefPubMedGoogle Scholar
  34. Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011b) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Proc Biochem 46:440–447CrossRefGoogle Scholar
  35. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiol 12:3CrossRefPubMedPubMedCentralGoogle Scholar
  36. Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH (2015a) Plant growth-promoting potential of endophytic fungi isolated from Solanumnigrum leaves. World J Microbiol Biotechnol 31(9):1461–1466CrossRefPubMedGoogle Scholar
  37. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015b) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74CrossRefPubMedGoogle Scholar
  38. Klöepper JW, Lifshitz R, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44CrossRefGoogle Scholar
  39. Korkama-Rajala T, Müller MM, Pennanen T (2008) Decomposition and fungi of needle litter from slow- and fast-growing Norway spruce (Picea abies) clones. Microb Ecol 56:76–89CrossRefPubMedGoogle Scholar
  40. Kumari R, Yadav HK, Bhoon YK, Varma A (2003) Colonization of cruciferous plants by Piriformospora indica. Curr Sci 85:1648Google Scholar
  41. Lee K, Pan JJ, May G (2009) Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol Lett 299:31–37CrossRefPubMedGoogle Scholar
  42. Lee YC, Johnson JM, Chien C-T, Sun C, Cai D, Lou L, Oelmüller R, Yeh K-W (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. MPMI 24:421–431CrossRefPubMedGoogle Scholar
  43. Li JY, Strobel GA, Harper JK, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis quercina. Org Lett 2:767–770CrossRefPubMedGoogle Scholar
  44. Li H, Huang H, Shao C, Huang H, Jiang J, Zhu X, Liu Y, Liu L, Lu Y, Li M, Lin Y, She Z (2011) Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala. J Nat Prod 74:1230–1235CrossRefPubMedGoogle Scholar
  45. Liang ZN, Zhu H, Lai KP, Chen L (2014) Isolation of endophytic fungi from medicinal plant Brucea javanica and their microbial inhibition activity. Zhong Yao Cai 37(4):564–568PubMedGoogle Scholar
  46. Loria ER, Sawyer JE (2005) Extractable soil phosphorus and inorganic nitrogen following application of raw and anaerobically digested swine manure. Agron J 97:879–885CrossRefGoogle Scholar
  47. Lu Y, Chen C, Chen H, Zhang J, Chen W (2012) Isolation and identification of endophytic fungi from Actinidia macrosperma and investigation of their bioactivities. Evid Based Compl Altern Med, Article ID 382742Google Scholar
  48. Mejía LC, Rojas EI, Maynard Z, Bael SV, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14CrossRefGoogle Scholar
  49. Muńoz A, Gandía M, Harries E, Carmona L, Read ND, Marcos JF (2013) Understanding the mechanism of action of cellpenetrating antifungal peptides using the rationally designed hexapeptide PAF26 as a model. Fungal Biol Rev 26:146–155CrossRefGoogle Scholar
  50. Nath R, Sharma GD, Barooah M (2012a) Efficiency of tricalcium phosphate solubilization by two different endophytic Penicillium sp. isolated from tea (Camellia sinensis L.). European. J Exp Biol 2(4):1354–1358Google Scholar
  51. Nath R, Sharma GD, Barooah M (2012b) Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis L.) shrubs of Assam, India. Appl Ecol Environ Res 13(3):877–891Google Scholar
  52. Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46CrossRefPubMedGoogle Scholar
  53. Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716CrossRefPubMedGoogle Scholar
  54. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3- acetic acid. Can J Microbiol 42:207–220CrossRefGoogle Scholar
  55. Pennisi E (2001) The push to pit genomics against fungal pathogens. Science 292:2273–2274CrossRefGoogle Scholar
  56. Pocasangre LE, Sikora RA, Vilich V, Schuster RP (2000) Survey of banana endophytic fungi from Central America and screening for biological control of Radopholus similis. Acta Hortic 531:283–289CrossRefGoogle Scholar
  57. Poling SM, Wicklow DT, Rogers KD, Gloer JB (2008) Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J Agric Food Chem 56:3006–3009CrossRefPubMedGoogle Scholar
  58. Popay AJ, Prestidge RA, Rowan DD, Dymock JJ (1990) The role of Acremonia lolii mycotoxins in insect resistance of perennial ryegrass (Lolium perenne). In: Quisenberry SS, Joost RE (eds) Proceedings of the 1st international symposium on Acremonium/grass interactions. Louisiana Agriculture Experiment Station, Baton RougeGoogle Scholar
  59. Prabukumar S, Rajkuberan C, Ravindran K, Sivaramakrishnan S (2015) Isolation and characterization of endophytic fungi from medicinal plant Crescentia cujete L. and their antibacterial, antioxidant and anticancer properties. Int J Pharm Pharm Sci 7:316–321Google Scholar
  60. Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024CrossRefPubMedGoogle Scholar
  61. Prathyusha P, Rajitha Sri AB, Ashokvardhan T, Satya Prasad K (2015) Antimicrobial and Siderophore Activity of the Endophytic Fungus Acremonium sclerotigenum Inhabiting Terminalia bellerica Roxb. Int J Pharma Sci Rev Res 16:84–87Google Scholar
  62. Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99CrossRefGoogle Scholar
  63. Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-Ul-Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2:8CrossRefPubMedPubMedCentralGoogle Scholar
  64. Radhakrishnan R, Khan AL, Kang SM, Lee I-J (2015) A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp KNU01 under salt stress. Ann Microbiol 65:585–593CrossRefGoogle Scholar
  65. Rajulu MBG, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, Gueddari NEE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53CrossRefGoogle Scholar
  66. Raviraja NS (2005) Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. J Basic Microbiol 45:230–235CrossRefPubMedGoogle Scholar
  67. Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804CrossRefPubMedPubMedCentralGoogle Scholar
  68. Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Grupta VVSR, Grace PR (eds) Soil biota, management in sustainable farming systems. CSIRO, Melbourne, pp 50–62Google Scholar
  69. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906Google Scholar
  70. Rim SO, Lee JH, Choi WY, Hwang SK, Suh SJ, Lee IJ, Rhee IK, Kim JG (2005) Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J Microbiol Biotechnol 15:809–814Google Scholar
  71. Rowan DD, Hunt MB, Gaynor DL (1986) Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. J Chem Soc Chem Commun 12:935–936CrossRefGoogle Scholar
  72. Sandhu SS, Kumar K, Aharwal RP (2014) Isolation and identification of endophytic fungi from Ricinus communis Linn. and their antibacterial activity. Int J Res Pharm Chem 4(3):611–618Google Scholar
  73. Schardl CL, Phillips TD (1997) Grass endophytes. Plant Dis 81:5CrossRefGoogle Scholar
  74. Shiva Kameshwari MN, Mohana B, Thara Saraswathi K (2015) Isolation and identification of endophytic fungi from Urginea indica, a medicinal plant from diverse regions of South India. Int J Latest Res Sci Technol 4:75–80Google Scholar
  75. Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Loliumperenne) are independent of In Planta endophyte concentration. Ann Bot 98(2):379–387CrossRefPubMedPubMedCentralGoogle Scholar
  76. Strobel GA, Milln RV, Condron M, Teplow DB, Hess WM (1999) Cryptocandin- a potent antimycotoic from endophytic fungus Cryptosporiopsis quercina. Microbiology 145:1919–1926CrossRefGoogle Scholar
  77. Tan XM, Chen XM, Wang CL, Jin XH, Cui JL, Chen J, Guo SX, Zhao LF (2012) Isolation and identification of endophytic fungi in roots of nine Holcoglossum plants (Orchidaceae) collected from Yunnan, Guangxi, and Hainan provinces of China. Curr Microbiol 64(2):140–147CrossRefPubMedGoogle Scholar
  78. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050CrossRefPubMedGoogle Scholar
  79. Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60(4):903–914CrossRefPubMedGoogle Scholar
  80. Varma A, Verma S, Sudha Sahay N, Buttehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744PubMedPubMedCentralGoogle Scholar
  81. Varma A, Bakshi B, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131CrossRefGoogle Scholar
  82. Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82CrossRefGoogle Scholar
  83. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391CrossRefPubMedGoogle Scholar
  84. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773CrossRefGoogle Scholar
  85. Waqas M, Khan AL, Lee IJ (2014a) Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J Plant Interact 9:478–487CrossRefGoogle Scholar
  86. Waqas M, Khan AL, Kang SM, Kim YH, Lee IJ (2014b) Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fertil Soils 50:1155–1167CrossRefGoogle Scholar
  87. Waqas M, Khan AL, Hamayun M, Shahzad R, Kang S-M, Kim J-G, Lee I-J (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287CrossRefGoogle Scholar
  88. Webber J (1981) A natural control of Dutch elm disease. Nature 292:449–451CrossRefGoogle Scholar
  89. Xie X-G, Dai C-C (2015) Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari. Int Biodeterior Biodegrad 104:498–507CrossRefGoogle Scholar
  90. Xie L, Usui E, Narisawa K (2016) An endophytic fungus, Ramichloridium cerophilum, promotes growth of a non-mycorrhizal plant, Chinese cabbage. Afr J Biotechnol 15:1299–1305CrossRefGoogle Scholar
  91. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev Med Chem 11(2):159–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pratibha Vyas
    • 1
  • Anu Bansal
    • 2
  1. 1.Department of Microbiology, School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Department of Biochemistry, School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia

Personalised recommendations