Advertisement

Slime Moulds: The Tiny Charmers

  • Anubha Pathak
  • Sharda Vaidya
Chapter

Abstract

Slime moulds are the special organisms exhibiting characters similar to lower animal groups on one side and with fungi on the other side. They show a plasmodial stage in the life cycle with amoeboid movement which is similar to protozoans. They produce sporocarp-bearing spores within similar to fungi. Because of this, they were sometimes considered as “animalcules”, or they gained the name “slime moulds”. Today they are separated from both these groups and are thought to form a separate group. But even today these organisms are studied by the mycologists. There are basically two types of slime moulds – cellular and plasmodial. In this chapter, we will primarily discuss the plasmodial slime moulds. They typically belong to the group Myxomycetes.

References

  1. Adl MS (2003) The ecology of soil decomposition. CABI Publishing, WallingfordCrossRefGoogle Scholar
  2. Adl MS, Gupta VVSR (2006) Protists in soil ecology and forest nutrient cycling. Can J For Res 36:1805–1817CrossRefGoogle Scholar
  3. Admitzky A (2009) Physarum boats: if Plasmodium sailed, it would never leave port. Appl Bionics Biomech.  https://doi.org/10.1080/11762320902863890 Online
  4. Admitzky A, Jones J (2008) Towards Physarum robots: computing and manipulating on water surface. J Bionic Eng 5:348–357CrossRefGoogle Scholar
  5. Agnihothrudu V (1956) Some slime molds of Southern India IV and V. J Indian Bot Soc 35(27,37):210–221Google Scholar
  6. Agnihothrudu V (1968) Some slime moulds of Southern India. 10. Sydowia 22:179–182Google Scholar
  7. Agnihothrudu V (1958) Notes on Fungi from NorthEast India II. An undescribed myxomycetes from Assam. J Indian Bot Soc 37:499–503Google Scholar
  8. Agnihothrudu V (1959a) A list of Indian myxomycetes. J Madras Univ B:120Google Scholar
  9. Agnihothrudu V (1959b) Notes on Fungi from Northeast India IV. J Indian Bot Soc 38:418–491Google Scholar
  10. Agnihothrudu V (1961) Some slime molds of Southern India 10. Sydowia 22:179–182Google Scholar
  11. Bhide VP, Sathe AV, Pande A, Patwardhan PG, Rao VG (1987) Fungi of Maharashtra. Suppl. I. Maharashtra Association for the Cultivation of Science, PuneGoogle Scholar
  12. Block I, Briegleb W, Sobick V, Wohlfarth-Bettermann KE (1986) Contraction behaviour and protoplasmic streaming in the slime mold Physarum polycephalum (Physarum kinetics). In: Proceedings of Norderney Symposium on Scientific Results of the German Spacelab Mission D1. Institut fūr Zytologie. Universität Bonn, Bonn, pp 408–418Google Scholar
  13. Collins OR (1969) Complementation between two color mutants in a true slime mold, Didymium iridis. Genetics 63:93–102PubMedPubMedCentralGoogle Scholar
  14. Considine JM, Mallette MF (1965) Production and partial purification of antibiotic materials formed by Physarum gyrosum. Appl Microbiol 13(3):464–468PubMedPubMedCentralGoogle Scholar
  15. Cummins JE, Rusch HP (1968) Natural synchrony in the slime molds. Endeavour 27:124–129PubMedGoogle Scholar
  16. Dembitsky VM, Razenka T, Spizek J, Hanus LO (2005) Secondary metabolites of slime molds. (Myxomycetes). Phytochemistry 66:747–769CrossRefPubMedGoogle Scholar
  17. Dembitsky VM, Razenka T, Spizek J, Hanus LO (2010) Secondary metabolites of slime molds. Theory Biosci 129(1):15–23CrossRefGoogle Scholar
  18. Everhart SE, Keller HW, Ely JS (2008) Influence of bark pH on the occurrence and distribution of tree canopy Myxomycetes species. Mycologia 100:191–204CrossRefPubMedGoogle Scholar
  19. Everhart SE, Ely JS, Keller HW (2009) Evaluation of a tree canopy epiphytes and bark characteristics associated with the presence of Corticolous Myxomycetes. Botany 87:509–517CrossRefGoogle Scholar
  20. Fröde R, Hinze C, Josten I, Schmidt B, Steffian B, Steglich W (1994) Isolation and synthesis of 3,4-bis(indol-3-yl)pyrrole-2,5-dicarboxylic acid derivatives from the slime mold, Lycogala epidendrum. Tetrahedron Lett 35:1689–1690CrossRefGoogle Scholar
  21. Hibino S, Choshi T (2002) Simple indole alkaloids and those with a non-rearranged Monoterpenoid unit. Nat Prod Rep 19:148–180CrossRefPubMedGoogle Scholar
  22. Hoyosa T, Yamamoto Y, Uehara Y, Hoyashi M, Komiyama K, Ishibashi M (2005) New cytotoxic bis indole alkaloids with protein tyrosine kinase inhibitory activity from a Myxomycetes, Lycogala epidendrum. Bioorg Med Chem Lett 15:2776–2780CrossRefGoogle Scholar
  23. Indira PU (1968a) Some slime molds from Southern India VIII. J Indian Bot Soc 47:155–186Google Scholar
  24. Indira PU (1968b) Some slime molds from Southern India IX-distribution, habitat and variation. J Indian Bot Soc 47:330–340Google Scholar
  25. Indira PU (1975) Some slime molds from southern India XI. Kavaka 3:41–54Google Scholar
  26. Ishibashi M (2009) Study of myxomycetes as a source bioactive natural products. Chem Pharma Bull (Tokyo) 57(8):894–895CrossRefGoogle Scholar
  27. Kadam P (2010) Study of biodiversity of myxomycetes from Badlapur and Allied Area. M. Sc. Thesis. University of MumbaiGoogle Scholar
  28. Kadam P, Vaidya S (2011) Biodiversity of slime molds from Badlapur River and Barvi Dam. In: Proceedings of National Conference on “Forests for the Future of Man” held at Rathnam College, Bhandup, Mumbai on 16–17 Sept 2011, pp 268–275Google Scholar
  29. Kadam P, Vaidya S (2015) Taxonomy of Plasmodial Myxomycetes. Proceedings of National Conference on “New and Emerging Trends in Bioinformatics and Taxonomy” Held at B. N. Bandodkar College, Thane, Mumbai.14–15 Jan 2015Google Scholar
  30. Keller HW, Everhart SE (2010) Importance of Myxomycetes in biological research and teaching. Fungi 3(1):13–27Google Scholar
  31. Keller HW, Kilgore CM, Everhart SE, Carmack GJ, Crabtree CD, Scarborough AR (2008) Myxomycete plasmodia and fruiting bodies: unusual occurrences and user friendly study techniques. Fungi 1(1):24–37Google Scholar
  32. Kilgore CM, Keller HW, Ely JS (2009) Aerial reproductive structures on vascular plants as a microhabitat for Myxomycetes. Mycologia 101:303–317CrossRefGoogle Scholar
  33. Lakhanpal TN, Mukherji KG (1981) Taxonomy of the Indian myxomycetes. A. R. Gantner- Verlag. K. G., VaduzGoogle Scholar
  34. Ljubimova JYM, Fujita NM, Khazenzon BS, Lee S, Wachmann-Hogiu S, Farkas DL, Black KL, Holler E (2008) Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 171:195–203CrossRefPubMedGoogle Scholar
  35. Lopez A, Garcia H, Herrador JL (1982) Nuevos Registros de Hongos Cosmetibles de la Region del Cofre de Porte, Estado de Veracruz. (Abstract). P.30. in Primer Congresso National de Mycologia. Sociedad Mexicana de Mycologia, XalapaGoogle Scholar
  36. Macabago SAB, dela Cruz TEE (2014) Preservation and extracellular enzyme production of myxomycetes from Lubang Island, Occidental Mindoro, Philippines. Philipp Sci Lett 7(2):331–336Google Scholar
  37. Manoharachary C, Rajithasri AB (2015) Interesting slime molds from Telangana State, India. J Indian Bot Soc 94(3 and 4):286–288Google Scholar
  38. Manoharachary C, Kunwar IK, Tilak KVBR (2012) Some myxomycetes from Andhra Pradesh, India. J Indian Bot Soc 9(4):427–429Google Scholar
  39. Manoharachay C, Nagaraju D (2016) Myxomycetes: the forgotten fungi-like living organisms from India. Kavaka 47:35–41Google Scholar
  40. Mishra RL (1980) Myxomycetes and soil fungi of Maharashtra. Ph. D. Thesis. Pune University, Pune-411007Google Scholar
  41. Misono Y, Ishikawa Y, Yamamoto Y, Hayashi MDL, Komiyama K, Ishibashi M (2009) Dihydrolindbladiones, three new naphthaquinone pigments from a myxomycetes Lindbladia tubulina. Chem Pharm Bull 57(8):894–895CrossRefGoogle Scholar
  42. Mohalid N, Hanzah AS, Shaameri Z (2015) Chemical exploration of 4-Hydroxybenzylated-3-Gantian Acid Tetramik. Malas J Anal Sci 19(2):359–362Google Scholar
  43. Moitra M, Nishi A (1993) Purification and partial characterization of β-galactosidase from plasmodial membrane and culture medium of Physarum polycephalum. J Gen Microbiol 139:1635–1641CrossRefGoogle Scholar
  44. Morita M, Nishi A (1991) Glycoproteins and enzymes associated with the plasmodial membrane and slime layer of Physarum polycephalum. J Gen Appl Microbiol 37:93–109CrossRefGoogle Scholar
  45. Murase M, Watanabe K, Yoshida T, Topinga S (2000) A new concise synthesis of arcyriacyanin A and its unique inhibitory activity against a panel of human cancer cell lines. Chem Pharm Bull 48:81–84CrossRefPubMedGoogle Scholar
  46. Nakagaki T, Yamada H, Toh A (2000) Intelligence: maze solving by an amoeboid organism. Nature 407:470CrossRefPubMedGoogle Scholar
  47. Nakatani S, Kamata K, Sato M, Onuki H, Hirota H, Matsumoto J, Ishibashi M (2005) Melleumin A, a novel peptide lactone isolated from the cultured myxomycetes, Physarum melleum. Tetrahedron Lett 46:267–271CrossRefGoogle Scholar
  48. Olive LS (1975) The mycetozoans. Academic, New YorkGoogle Scholar
  49. Racoczy L (1998) Plasmodial pigmentation of the acellular slime mold, Physarum polycephalum in relation to the irradiation period. Pol J Environ Stud 7(6):337–342Google Scholar
  50. Ranade VD, Korade ST, Jagtap AV, Randive KR (2012) Checklist of myxomycetes from India. Mycosphere 3:358–390CrossRefGoogle Scholar
  51. Rockwell WJ, Collins RP, Santilli J (1989) Fuligo, a myxomycetes, an allergen. J Allergy Clin Immunol 83:266Google Scholar
  52. Shintani A, Yamazaki H, Yamamoto Y, Ahmed F, Ishibashi M (2003) Cribarione C, a naphthaquinone pigment from myxomycete Cribaria meylanii. J Nat Proc 66(7):999–1001CrossRefGoogle Scholar
  53. Shroeder HR, Mallette MF (1973) Isolation and purification of antibiotic material from Physarum gyrosum. Antimicrob Agents Chemother 4(2):160–166CrossRefGoogle Scholar
  54. Steglich W (1989) Slime molds (Myxomycetes) as a source of new biochemically active metabolites. Pure Appl Chem 61:281–288CrossRefGoogle Scholar
  55. Stephenson SL, Stempen H (2000) Myxomycets: a handbook of slime molds. Timber Press, PortlandGoogle Scholar
  56. Stijve T, Andrey D (1999) Accumulation of various metals by Fuligo septica (L) Wiggers and by some other slime molds (Myxomycetes). Aust Mycoogist 18(2):23–26Google Scholar
  57. Tairbekov MG, Belina SI, Lairand DB, Budnitzky AA, Lendev VV (1984) Plasmodium of myxomycetes as the object of the investigation in gravitation biology. Iswestiya Akademii Nauk USSR Seriya. Biologitscheskaya 2:198–209Google Scholar
  58. Taylor RL, Mallette MF (1976) Growth of Physarum gyrosum on agar plates and in liquid culture. Antimicrob Agents Chemother 10(4):613–617CrossRefPubMedPubMedCentralGoogle Scholar
  59. Thind KS (1977) The myxomycetes of India. I. C. A. R, New DehliGoogle Scholar
  60. Villareal L (1983) Algunas Especies de Myxomycetes no Registradas del Estado Veracruz. Boletin de la Sociedad Mexicana de Mycologia 18:153–164Google Scholar
  61. Zhulidov DA, Robarts RD, Zhulidov AV, Zhulidova OV, Markelov DA, Rusanov VA, Headley JV (2002) Zinc accumulation by the slime mold Fuligo septica (L) Wiggers in the former soviet union and North Korea. J Environ Qual 31:1038–1042CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anubha Pathak
    • 1
  • Sharda Vaidya
    • 1
  1. 1.Department of BotanySmt. C.H.M. CollegeUlhasnagarIndia

Personalised recommendations