Bioactive Compounds from Endophytic Fungi

  • Vijayalakshmi Selvakumar
  • A. Panneerselvam


Endophytic fungi are highly potential for the production of pharmaceutically valuable compounds such as anticancer, antioxidant, antimicrobial, antidiabetic and industrial enzymes, etc. Today human faces a lot of challenges for existence due to the appearance of new diseases, infections, drug resistances and imbalances in the ecosystems. Here endophytes were the potential sources for the new remedies. Endophytes are contemplated as a treasury for bioprospecting, and they assist in many forms to conquer many complications. Among the various endophytic microbes, fungi have been found most potential microorganisms which are a reservoir of largely untapped bioactive metabolites. In the future we need to seek for endophytes for their bioactive compounds.


Endophytic fungi Bioactive compounds Host plants Podophyllotoxin Camptothecine Vinblastine Hypericin 


  1. Adbessamad D, Aly Amal H, Edrada-Ebel RA, Mueller WEG, Mosaddak M, Hakikj A, Ebel R, Proksch P (2009) Bioactive secondary metabolites from the endophytic fungus Chaetomium sp. isolated from Salvia officinalis growing in Morocco. Biotechnol Agron Soc Environ (BASE) 13(2):229–234Google Scholar
  2. Bérdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot 58:1–26CrossRefPubMedGoogle Scholar
  3. Bharathidasan R, Panneerselvam A (2013) Diversity and biotechnological application of endophytic fungi from mangrove plants of Karankadu, Ramanathapuram district, Tamil Nadu, India. Ph.D thesis, Refer to Bharathidasan University, TrichyGoogle Scholar
  4. Chen L, Chen J, Zheng X, Zhang J, Yu X (2007) Identification and antifungal activity of the metabolite of endophytic fungi isolated from Ilex cornuta. Nongyaoxue Xuebao 9:143–150Google Scholar
  5. Cheng Z-s, Pan J-H, Wen-cheng T, Qi-jin C, Lin Y-c (2009) Biodiversity and biotechnological potential of mangrove – associated fungi. J For Res 20(1):63–72CrossRefGoogle Scholar
  6. Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbaek L (1999) Antibacterial activity of marine – derived fungi. Mycopathologia 143:135–138CrossRefGoogle Scholar
  7. Dayle ES, Polans NO, Paul DS, Melvin RD (2001) Angiosperm DNA contamination by endophytic fungi: detection and methods of avoidance. Plant Mole Biol Rep 19:249–260CrossRefGoogle Scholar
  8. De Souza JJ, Vieira IJ, Rodrigues-Filho E, Braz-Filho R (2011) Terpenoids from endophytic fungi. Mol Ther 16:10604–10618Google Scholar
  9. Dreyfuss MM (1986) Neue Erkienntnisse aus einem pharmakologischen Pilzscreening. Sydowia 39:22–36Google Scholar
  10. Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, Boston, pp 49–80CrossRefGoogle Scholar
  11. Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62/3:251–257Google Scholar
  12. Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palm. Mycol Res 104:1202–1212CrossRefGoogle Scholar
  13. Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine – derived fungus Trichoderma virens. J Nat Prod 66:423–426CrossRefPubMedGoogle Scholar
  14. Ghisalberti E, Rowland CJ (1993) Antifungal metabolites from Trichoderma harzianum. Nat Prod 56:1799CrossRefGoogle Scholar
  15. Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK (2012) Anticancer activity of sclerotiorin, isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50(7):464–468PubMedGoogle Scholar
  16. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo B, Li H, Zhang L (1998) Isolation of the fungus producing vinblastine. J Yunnan Univ (Nat Sci Ed) 20:214–215Google Scholar
  18. Henson RNA, Rugg MD, Shallice T, Josephs O, Dolan RJ (1999) Recollection and familiarity in recognition memory: an event related functional magnetic resonance imaging study. J Neurosci 19(10):3962–3972CrossRefPubMedGoogle Scholar
  19. Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) Potential antioxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot 61:14–30CrossRefGoogle Scholar
  20. Humberto H, Lara V, Ayala-Nunez NV, Carmen LD, Ixtepan T, Cristina RP (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621CrossRefGoogle Scholar
  21. Imtiaj A, Lee T-S (2007) Screening of antibacterial and antifungal activities from Korean wild mushrooms. World J Agric Sci 3:316–321Google Scholar
  22. Isaka M, Suryansestakorn C, Tanticharoen M (2002) Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Organomet Chem 67:1561–1566CrossRefGoogle Scholar
  23. Kaushal Kanwer S, Rao DV, Batra A (2013) In vitro antimicrobial activities of endophytic fungi isolates medicinal tree – Melia azedarach L. J Microbiol Res 3(1):19–24Google Scholar
  24. Kusari S, Zuhlke S, Spiteller M (2009a) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7CrossRefPubMedGoogle Scholar
  25. Kusari S, Lamshoft M, Spiteller M (2009b) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer prodrug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030CrossRefPubMedGoogle Scholar
  26. Li MY, Xiao Q, Pan JY, Wu J (2009) Natural products from semi-mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 26(2):281–298CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lin YC, Zhou SN (2003) Marine microorganisms and its metabolites. Chemical Industry Press, Beijing, pp 426–427Google Scholar
  28. Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171–1177CrossRefPubMedGoogle Scholar
  29. Lodge D, Fisher PG, Sutton BC (1996) Endophytic fungi of Manilkara bidentata in fruticose lichens. Mycologia 82:444–451Google Scholar
  30. Logesh AR, Thillaimaharani KA, Sharmila K, Kalaiselvam M, Raffi SM (2012) Production of chitosan from endolichenic fungi isolated from mangrove environment and its antagonistic activity. Asian Pac J Trop Biomed 2(2):140–143CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ma YM, Li Y, Liu JY, Song YC, Tan RX (2004) Anti-Helicobacter pylori metabolites from Rhizoctonia sp. Cy064, an endophytic fungus in Cynodon dactylon. Fitoterapia 75:451–456CrossRefPubMedGoogle Scholar
  32. Marquez S, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195Google Scholar
  33. Mekawey AAI (2010) The antibiotic properties of several strains of fungi. Aust J Basic Appl Sci 4:3441–3454Google Scholar
  34. Min C, Wang X (2009) Isolation and identification of the 10-hydroxycamptothecin-producing endophytic fungi from Camptotheca acuminata Decne. Acta Botan Boreali-Occiden Sin 29:0614–0617Google Scholar
  35. Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananasoides in the Bolivian Amazon. Fungal Divers 31:37–43Google Scholar
  36. Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386CrossRefPubMedGoogle Scholar
  37. Pela’ez F (2005) Biological activities of fungal metabolites. In: An Z (ed) Handbook of industrial mycology. Marcel Dekker, New York, pp 49–92Google Scholar
  38. Pelaez F, Collado J, Arenal F, Basilio A, Cabello A, Diez Matas MT, Garcia B, Gonzalez Del Val A, Gonzalez V, Gorrochategui J, Hernandez P, Martin I, Platas G, Vicente F (1998) Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol Res 102(6):755–761CrossRefGoogle Scholar
  39. Petrini LE, Petrini O (1985) Xylariaceous fungi as endophytes. Sydowia 38:216–234Google Scholar
  40. Petrini A, Hake U, Dreyfuss M (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451CrossRefGoogle Scholar
  41. Poch GK, Gloer JB (1991) Auranticins A and B: two depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod 54:213–217CrossRefPubMedGoogle Scholar
  42. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315CrossRefPubMedGoogle Scholar
  43. Prabavathy D, Valli NC (2013) Antimicrobial and antidiabetic activity of an endophytic fungi isolated from Adathoda beddomei. Int J Pharm Pharm Sci 5:780–783Google Scholar
  44. Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR, Kobayashi M (2010) Tricoderins, novel aminolipopeptiides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20(12):3658–3663Google Scholar
  45. Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Hassan UI, S.R. (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the western Himalayas. Springer Plus 2(8):2–14Google Scholar
  46. Schultz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Doring D (1995) Biologically active secondary metabolites of Pezicula species. Itlycol Res 99:1007–1015Google Scholar
  47. Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  48. Schulz B, Draeger S, dela Cruz TE, Rheinheimer J, Siems K, Loesgen S, Bitzer J, Schloerke O, Zeeck A, Kock I, Hussain H, Dai J, Krohn K (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234CrossRefGoogle Scholar
  49. Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohanakumar P, Ravikanth G, Spiteller M (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey.ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71(1):117–122Google Scholar
  50. Silva MRO, Almeida AC, Arruda FVF, Gusmao N (2011) Endophytic fungi from Brazilian mangrove plant Laguncularia racemosa (L.) Gaertn. (Combretaceae): their antimicrobial potential. Sci Against Microb Pathog: Commun Curr Res Technol Adv 2:1260–1266Google Scholar
  51. Simon A, Dunlop RW, Ghulsalberti EL, Silvsithamparam K (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263CrossRefGoogle Scholar
  52. Stierle A, Strobel GA, Stierle DB (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216CrossRefPubMedGoogle Scholar
  53. Strobel G (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefPubMedGoogle Scholar
  54. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mole Biol 67(4):491–502CrossRefGoogle Scholar
  55. Strobel G, Hess WM, Li JY, Ford E, Sears J, Sidhu RS, Summerell B (1997) Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi Pine, Wollemia nobilis. Aust J Bot 45:1073–1082CrossRefGoogle Scholar
  56. Suryanarayanan TS, Murali TS (2006) Incidence of Leptosphaerulina crassiasca in symptomLess leaves of peanut in southern India. J Basic Microbiol 46:305–309CrossRefPubMedGoogle Scholar
  57. Suryanarayanan TS, Thennarasan S (2004) Temporal variation in endophyte assemblages of Plumeria rubra leaves. Fungal Divers 15:197–204Google Scholar
  58. Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006CrossRefGoogle Scholar
  59. Suryanarayanan TS, Senthilarasu G, Muruganandam V (2000) Endophytic fungi from Cuscuta reflexa and its host plants. Fungal Divers 4:117–123Google Scholar
  60. Takahashi JA, Monteiro de Castro MC, Souza GG, Lucas EMF, Bracarense AAP, Abreu LM, Marriel IE, Oliveira MS, Floreano MB, Oliveira TS (2008) Isolation and screening of fungal species isolated from Brazilian cerrado soil for antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Streptococcus pyogenes and Listeria monocytogenes. J Mycol Méd 18:198–204CrossRefGoogle Scholar
  61. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefPubMedGoogle Scholar
  62. Umali TE, Quimio TH, Hyde KD (1999) Endophytic fungi in leaves of Bambusa tuldoides. Fungal Sci 14:11–18Google Scholar
  63. Vicente MF, Cabello A, Platas G, Basilio A, Díez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Peláez F (2011) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91(5):806–813CrossRefGoogle Scholar
  64. Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:706–711Google Scholar
  65. Vogl A (1898) Mehl und die anderen mehl produkte der cerealien und leguminosen. Zeitschrift Nahrungsmittle untersuchung, Hgg. Warlenkunde 21:25–29Google Scholar
  66. Wang FW, Hon ZM, Wang CR, Li P, Shi DH (2008) Bioactive metabolites from Penicillium sp., and endophytic fungi residing in Hopea hainanensis. World J Biotechnol 24:2143–2147CrossRefGoogle Scholar
  67. White F Jr, Drake TE, Martin N (1996) Endophyte host associations in grasses. XXIII. A study of two species of Balansia that form stromata on nodes of grasses. Mycologia 88:89–97CrossRefGoogle Scholar
  68. Wu B, Oesker V, Wiese J, Schmalijohann R, Imhoff JF (2014) Two new antibiotic pyridines produced by a marine fungus, Trichoderma sp. Strain MF106. Mar Drugs 12:1208–1219CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yin H, Sun YH (2011) Vincamine-producing endophytic fungus isolated from Vinca minor. Phytomedicine 18:802–805CrossRefPubMedGoogle Scholar
  70. Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, Wei R (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Tradit Herb Drug 31:805–807Google Scholar
  71. Zhang Y, Han T, Ming Q, Wu L, Rahman K, Qin L (2012) Alkaloids produced by endophytic fungi: a review. Nat Prod Commun 7(7):963–968PubMedGoogle Scholar
  72. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res Technol Educat Top Appl Microbiol Microbial Biotechnol 1:567–576Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vijayalakshmi Selvakumar
    • 1
  • A. Panneerselvam
    • 2
  1. 1.Department of MicrobiologyShrimati Indira Gandhi CollegeTiruchirappalliIndia
  2. 2.Department of Botany and MicrobiologyA.V.V.M Sri Pushpam College, (Autonomous)ThanjavurIndia

Personalised recommendations