Current Perspectives of Endophytic Fungi in Sustainable Development

  • Rashmi Mishra
  • V. Venkateswara Sarma


Endophytic fungi inhabit plant tissues asymptomatically and confer a high diversity. They are polyphyletic in nature and primarily belong to the division Ascomycota. Endophytes are an important component of sustainable development in community ecology as they support the rich biodiversity and bioremediation of organic pollutants, wastewater, poisonous gases, industrial sewage, and heavy metals or in agricultural sufficiency. Endophytes are known to produce different kinds of secondary metabolites, and many of them are similar to what the host plants produce. Around 80% of the world’s population, mostly those in the developing countries, still rely on herbal medicines for their primary healthcare. Usage of plant sources for commercial production of bioactive compounds requires sacrifice of several trees to obtain satisfactory amounts. This is more so if they were to be isolated from endemic and endangered plant species. Such an aspect poses a grave threat to biodiversity conservation and forces us to go for a judicious usage of plant resources. Hence, production of bioactive compounds by the microorganisms that are intrinsic to the host plant tissues gives us hope. This is because microbial fermentation is comparably cheaper and economically stable and offers a sustainable source to pharmaceutical industries. In this chapter current perspectives of endophytic fungi in sustainable usage such as bioactive compounds of therapeutic use, biotransformations, plant defense and protection mechanisms, biocontrol, and crop production and in sustainable development including nutrient recycling and ecosystem functioning are reviewed and discussed.


Endophytic fungi Nutrient recycling Antibiotics Biotransformation Biocontrol Bioactive compounds 


  1. Abdalla MA, Matasyoh JC (2014) Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat Prod Bioprospect 4:257–270PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abrahão MRE, Molina G, Pastore GM (2013) Endophytes: recent developments in biotechnology and the potential for flavor production. Food Res Int 52:367–372CrossRefGoogle Scholar
  3. Agusta A, Maehara S, Ohashi K, Simanjuntak P, Shibuya H (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:1565–1569PubMedCrossRefPubMedCentralGoogle Scholar
  4. Agusta A, Wulansari D, Nurkanto A, Fathoni A (2014) Biotransformation of protoberberine alkaloids by the endophytic fungus Coelomycetes AFKR-3 isolated from yellow moonseed plant (Archangelisia flava (L.) Merr.). Procedia Chem 13:38–43CrossRefGoogle Scholar
  5. Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aneja M, Gianfagna TJ, Hebbar PK (2005) Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiol Mol Plant Pathol 67:304–307CrossRefGoogle Scholar
  8. Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398PubMedCrossRefPubMedCentralGoogle Scholar
  9. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots. Ecology 88:541–549PubMedCrossRefGoogle Scholar
  10. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ashforth EJ, Fu C, Liu X, Dai H, Song F, Guo H, Zhang L (2010) Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 27:1709–1719PubMedCrossRefPubMedCentralGoogle Scholar
  12. Azerad R (1999) Microbial models for drug metabolism. In: Biotransformations. Springer, Berlin, pp 169–218CrossRefGoogle Scholar
  13. Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:15–16CrossRefGoogle Scholar
  14. Babu AG, Shim J, Bang K-S, Shea PJ, Oh B-T (2014a) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134CrossRefGoogle Scholar
  15. Babu AG, Shim J, Shea PJ, Oh B-T (2014b) Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudangrass. Ecol Eng 69:186–191CrossRefGoogle Scholar
  16. Bacon CW, White JF (2000) Microbial endophytes. Marcel Deker, NewYorkGoogle Scholar
  17. Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi I-Y, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464PubMedCrossRefPubMedCentralGoogle Scholar
  18. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel K, Schäfer P, Schwarczinger I (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bateman R (2002) Best-bet solutions for cocoa diseases. Gro-Cocoa Newsl 1:4–5Google Scholar
  20. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefPubMedCentralGoogle Scholar
  21. Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Microbial root endophytes. Springer, Berlin, pp 53–69CrossRefGoogle Scholar
  22. Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651–1659PubMedCrossRefPubMedCentralGoogle Scholar
  23. Berry LA, Deacon JW (1992) Video-analysis of Gliocladium roseum in relation to mechanism of antagonism of plant pathogens. Bull OILB/SROP 15:64–66Google Scholar
  24. Bhagobaty RK, Joshi SR, Kumar R (2010) Penicillium verruculosum RS7PF: a root fungal endophyte associated with an ethno-medicinal plant of the indigenous tribes of Eastern India. Afr J Microbiol Res 4:766–770Google Scholar
  25. Bills GF, Polishook JD (1992) Recovery of endophytic fungi from Chamaecyparis thyoides. Sydowia 44:1–12Google Scholar
  26. Bisht D, Owais M, Venkatesan K (2006) Potential of plant-derived products in the treatment of mycobacterial infections. Mod Phytomedicine Turn Med Plants into Drugs, 293–311Google Scholar
  27. Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal Ecol 4:110–114CrossRefGoogle Scholar
  28. Boonphong S, Kittakoop P, Isaka M, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y (2001) Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J Nat Prod 64:965–967PubMedCrossRefPubMedCentralGoogle Scholar
  29. Borges KB, de Souza Borges W, Durán-Patrón R, Pupo MT, Bonato PS, Collado IG (2009a) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry 20:385–397CrossRefGoogle Scholar
  30. Borges W d S, Borges KB, Bonato PS, Said S, Pupo MT (2009b) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163CrossRefGoogle Scholar
  31. Bryant MK, May KJ, Bryan GT, Scott B (2007) Functional analysis of a β-1, 6-glucanase gene from the grass endophytic fungus Epichloë festucae. Fungal Genet Biol 44:808–817PubMedCrossRefPubMedCentralGoogle Scholar
  32. Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour-the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:fiw114PubMedCrossRefPubMedCentralGoogle Scholar
  33. Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377PubMedCrossRefPubMedCentralGoogle Scholar
  34. Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigricans. Microbiology 148:2675–2685PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chen Y, Wang H-W, Li L, Dai C-C (2013) The potential application of the endophyte Phomopsis liquidambari to the ecological remediation of long-term cropping soil. Appl Soil Ecol 67:20–26CrossRefGoogle Scholar
  36. Cheng M-J, Wu M-D, Yanai H, Su Y-S, Chen I-S, Yuan G-F, Hsieh S-Y, Chen J-J (2012) Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity. Phytochem Lett 5:467–472CrossRefGoogle Scholar
  37. Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P (2005) 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: is 3-NPA in some plants produced by endophytes? J Nat Prod 68:1103–1105PubMedCrossRefPubMedCentralGoogle Scholar
  38. Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science (80- ) 285:1742–1744PubMedCrossRefPubMedCentralGoogle Scholar
  39. Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Pedreño MA, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 32:1157–1167PubMedCrossRefPubMedCentralGoogle Scholar
  40. Da Silva MF, de Souza Antônio C, de Oliveira PJ, Xavier GR, Rumjanek NG, de Barros Soares LH, Reis VM (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356:231–243CrossRefGoogle Scholar
  41. Dai C, Tian L, Zhao Y, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255PubMedCrossRefPubMedCentralGoogle Scholar
  42. Davis EW (1995) Ethnobotany: an old practice, a new discipline. Dioscorides Press, PortlandGoogle Scholar
  43. Deng Z, Wang W, Tan H, Cao L (2012) Characterization of heavy metal-resistant endophytic yeast Cryptococcus sp. CBSB78 from rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut 223:5321–5329CrossRefGoogle Scholar
  44. Deng Z, Zhang R, Shi Y, Tan H, Cao L (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 21:2346–2357CrossRefGoogle Scholar
  45. DESA UN (2015) Population divisionGoogle Scholar
  46. Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar S, Sahoo MR, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009) Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers 6:784–789PubMedCrossRefPubMedCentralGoogle Scholar
  47. Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dhankhar S, Dhankhar S, Parkash Yadav J (2013) Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem (Los Angeles) 9:624–632Google Scholar
  49. Dingle J, Mcgee PA (2003) Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Mycol Res 107:310–316PubMedCrossRefPubMedCentralGoogle Scholar
  50. Doble M, Kruthiventi AK, Gaikar VG (2004) Biotransformations and bioprocesses. CRC Press, Boca RatonGoogle Scholar
  51. Domenech P, Barry CE, Cole ST (2001) Mycobacterium tuberculosis in the post-genomic age. Curr Opin Microbiol 4:28–34PubMedCrossRefPubMedCentralGoogle Scholar
  52. Easton HS, Christensen MJ, Eerens JPJ, Fletcher LR, Hume DE, Keogh RG, Lane GA, Latch GCM, Pennell CGL, Popay AJ (2001) Ryegrass endophyte: a New Zealand Grassland success story. In: Proceedings of the conference-New Zealand Grassland Association, pp 37–46Google Scholar
  53. Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96CrossRefGoogle Scholar
  54. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9PubMedPubMedCentralGoogle Scholar
  55. Elsässer B, Krohn K, Flörke U, Root N, Aust H, Draeger S, Schulz B, Antus S, Kurtán T (2005) X-ray structure determination, absolute configuration and biological activity of phomoxanthone A. Eur J Org Chem 2005:4563–4570CrossRefGoogle Scholar
  56. Elsebai MF, Natesan L, Kehraus S, Mohamed IE, Schnakenburg G, Sasse F, Shaaban S, Gütschow M, König GM (2011) HLE-inhibitory alkaloids with a polyketide skeleton from the marine-derived fungus Coniothyrium cereale. J Nat Prod 74:2282–2285PubMedCrossRefPubMedCentralGoogle Scholar
  57. Evans HC, Holmes KA, Thomas SE (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160CrossRefGoogle Scholar
  58. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124PubMedCrossRefPubMedCentralGoogle Scholar
  59. Faeth SH, Shochat E (2010) Inherited microbial symbionts increase herbivore abundances and alter arthropod diversity on a native grass. Ecology 91:1329–1343PubMedCrossRefPubMedCentralGoogle Scholar
  60. Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200PubMedCrossRefPubMedCentralGoogle Scholar
  61. Figueiredo AC, Almendra MJ, Barroso JG, Scheffer JJC (1996) Biotransformation of monoterpenes and sesquiterpenes by cell suspension cultures of Achillea millefolium L. ssp. millefolium. Biotechnol Lett 18:863–868CrossRefGoogle Scholar
  62. Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226PubMedCentralGoogle Scholar
  63. Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007) Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710PubMedCrossRefPubMedCentralGoogle Scholar
  64. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464PubMedPubMedCentralCrossRefGoogle Scholar
  65. Fukuda Y, Shinshi H (1994) Characterization of a novel cis-acting element that is responsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene. Plant Mol Biol 24:485–493PubMedCrossRefPubMedCentralGoogle Scholar
  66. Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. For Ecol Manag 255:2751–2760CrossRefGoogle Scholar
  67. Gao F, Zhang J-M, Wang Z-G, Peng W, Hu H-L, Fu C-M (2013) Biotransformation, a promising technology for anti-cancer drug development. Asian Pac J Cancer Prev 14:5599–5608PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ge HM, Zhang Q, Xu SH, Guo ZK, Song YC, Huang WY, Tan RX (2011) Chaetoglocins A–D, four new metabolites from the endophytic fungus Chaetomium globosum. Planta Med 77:277–280PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ghahfarokhi RM, Goltapeh ME (2010) Potential of the root endophytic fungus Piriformospora indica; Sebacina vermifera and Trichoderma species in biocontrol of take-all disease of wheat Gaeumannomyces graminis var. tritici in vitro. J Agric Technol 6:11–18Google Scholar
  70. Gimenez C, Cabrera R, Reina M, Gozalez-Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720CrossRefGoogle Scholar
  71. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence⊥. J Nat Prod 69:509–526PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27:1–93CrossRefGoogle Scholar
  73. Hajlaoui MR, Dip D, Cherif M (2001) Contribution to Sclerotinia blight caused by Sclerotinia sclerotiorum (Lib.) de Bary. Al-Awamia 104:85–101Google Scholar
  74. Hallmann J, Quadt-Hallmann A, Rodrıguez-Kábana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937CrossRefGoogle Scholar
  75. Hankin L, Poincelot RP, Anagnostakis SL (1975) Microorganisms from composting leaves: ability to produce extracellular degradative enzymes. Microb Ecol 2:296–308PubMedCrossRefPubMedCentralGoogle Scholar
  76. Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1, 3-dihydroisobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476CrossRefGoogle Scholar
  77. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170CrossRefGoogle Scholar
  78. Hemberger Y, Xu J, Wray V, Proksch P, Wu J, Bringmann G (2013) Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chem Eur J 19:15556–15564PubMedCrossRefPubMedCentralGoogle Scholar
  79. Herre EA, Mejía LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558PubMedCrossRefPubMedCentralGoogle Scholar
  80. Holmes KA, Schroers H-J, Thomas SE, Evans HC, Samuels GJ (2004) Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycol Prog 3:199–210CrossRefGoogle Scholar
  81. Hoveland CS (1993) Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant. Agric Ecosyst Environ 44:3–12CrossRefGoogle Scholar
  82. Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122PubMedCrossRefPubMedCentralGoogle Scholar
  83. Hussain H, Krohn K, Draeger S, Meier K, Schulz B (2009) Bioactive chemical constituents of a sterile endophytic fungus from Meliotus dentatus. Rec Nat Prod 3:114–117Google Scholar
  84. Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018PubMedCrossRefPubMedCentralGoogle Scholar
  85. Istifadah N, Saleeba JA, McGee PA (2006) Isolates of endophytic Chaetomium spp. inhibit the fungal pathogen Pyrenophora tritici-repentis in vitro. Botany 84:1148–1155Google Scholar
  86. Jaber LR, Vidal S (2009) Interactions between an endophytic fungus, aphids and extrafloral nectaries: do endophytes induce extrafloral-mediated defences in Vicia faba? Funct Ecol 23:707–714CrossRefGoogle Scholar
  87. Jäschke D, Dugassa-Gobena D, Karlovsky P, Vidal S, Ludwig-Müller J (2010) Suppression of clubroot (Plasmodiophora brassicae) development in Arabidopsis thaliana by the endophytic fungus Acremonium alternatum. Plant Pathol 59:100–111CrossRefGoogle Scholar
  88. Jiang M, Cao L, Zhang R (2008) Effects of Acacia (Acacia auriculaeformis A. Cunn)-associated fungi on mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) growth in Cd-and Ni-contaminated soils. Lett Appl Microbiol 47:561–565PubMedCrossRefPubMedCentralGoogle Scholar
  89. Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 9:e1003332PubMedPubMedCentralCrossRefGoogle Scholar
  90. Joost RE (1995) Acremonium in fescue and ryegrass: boon or bane? A review. J Anim Sci 73:881–888PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kari Dolatabadi H, Mohammadi Goltapeh E, Mohammadi N, Rabiey M, Rohani N, Varma A (2011) Biocontrol potential of root endophytic fungi and Trichoderma species against fusarium wilt of lentil under in vitro and greenhouse conditions. J Agric Sci Technol 14:407–420Google Scholar
  92. Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864PubMedCrossRefPubMedCentralGoogle Scholar
  93. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee I-J (2014) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50:75–85CrossRefGoogle Scholar
  94. Kim HY, Choi GJ, Lee HB, Lee SW, Kim HK, Jang KS, Son SW, Lee SO, Cho KY, Sung ND, Kim J-C (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44:332–337PubMedCrossRefGoogle Scholar
  95. Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Microbial root endophytes. Springer, Berlin, pp 33–52CrossRefGoogle Scholar
  96. Kornsakulkarn J, Dolsophon K, Boonyuen N, Boonruangprapa T, Rachtawee P, Prabpai S, Kongsaeree P, Thongpanchang C (2011) Dihydronaphthalenones from endophytic fungus Fusarium sp. BCC14842. Tetrahedron 67:7540–7547CrossRefGoogle Scholar
  97. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490PubMedCrossRefPubMedCentralGoogle Scholar
  98. Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121CrossRefGoogle Scholar
  99. Kumara PM, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Shaanker RU (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329CrossRefGoogle Scholar
  100. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162PubMedCrossRefPubMedCentralGoogle Scholar
  101. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030PubMedCrossRefPubMedCentralGoogle Scholar
  102. Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lee JC, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077CrossRefGoogle Scholar
  104. Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233CrossRefGoogle Scholar
  105. Lemons A, Clay K, Rudgers JA (2005) Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604PubMedCrossRefPubMedCentralGoogle Scholar
  106. Li Y-C, Tao W-Y (2009) Paclitaxel-producing fungal endophyte stimulates the accumulation of taxoids in suspension cultures of Taxus cuspidata. Sci Hortic (Amsterdam) 121:97–102Google Scholar
  107. Li HM, Sullivan R, Moy M, Kobayashi DY, Belanger FC (2004) Expression of a novel chitinase by the fungal endophyte in Poa ampla. Mycologia 96:526–536PubMedCrossRefPubMedCentralGoogle Scholar
  108. Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW (2011) Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ 409:1069–1074PubMedCrossRefPubMedCentralGoogle Scholar
  109. Li X, Li W, Chu L, White JF Jr, Xiong Z, Li H (2016) Diversity and heavy metal tolerance of endophytic fungi from Dysphania ambrosioides, a hyperaccumulator from Pb–Zn contaminated soils. J Plant Interact 11:186–192CrossRefGoogle Scholar
  110. Lim C, Kim J, Choi JN, Ponnusamy K, Jeon Y, Kim S-U, Kim JG, Lee C (2010) Identification, fermentation, and bioactivity against Xanthomonas oryzae of antimicrobial metabolites isolated from Phomopsis longicolla S1B4. J Microbiol Biotechnol 20:494–500PubMedPubMedCentralGoogle Scholar
  111. Liu JY, Song YC, Zhang Z, Wang L, Guo ZJ, Zou WX, Tan RX (2004) Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J Biotechnol 114:279–287PubMedCrossRefPubMedCentralGoogle Scholar
  112. Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78:241–247PubMedCrossRefPubMedCentralGoogle Scholar
  113. Liu K, Ding X, Deng B, Chen W (2010) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol Lett 32:689–693PubMedCrossRefGoogle Scholar
  114. Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73CrossRefGoogle Scholar
  115. Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from Doi Suthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112PubMedCrossRefGoogle Scholar
  116. Lynch JM, Slater JH, BENNETT JA, Harper SHT (1981) Cellulase activities of some aerobic micro-organisms isolated from soil. Microbiology 127:231–236CrossRefGoogle Scholar
  117. Maccheroni W Jr, Azevedo JL (1998) Synthesis and secretion of phosphatases by endophytic isolates of Colletotrichum musae grown under conditions of nutritional starvation. J Gen Appl Microbiol 44:381–387PubMedCrossRefGoogle Scholar
  118. Maciá-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV (2009) Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–218PubMedCrossRefGoogle Scholar
  119. Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34CrossRefGoogle Scholar
  120. Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267:1–12CrossRefGoogle Scholar
  121. Martin KL, Unkles SE, McDougall BM, Seviour RJ (2006) Purification and characterization of the extracellular β-1, 6-glucanases from the fungus Acremonium strain OXF C13 and isolation of the gene/s encoding these enzymes. Enzym Microb Technol 38:351–357CrossRefGoogle Scholar
  122. Martinez-Klimova E, Rodríguez-Peña K, Sánchez S (2016) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–17PubMedCrossRefGoogle Scholar
  123. McAlpine JB, Pazoles C, Stafford A (1999) Phytera’s strategy for the discovery of novel anti-infective agents from plant cell cultures. In: Bioassay methods in natural product research and drug development. Springer, Houten, pp 159–166CrossRefGoogle Scholar
  124. Mejia LC, Rojas EI, Maynard Z, Arnold AE, Kyllo D, Robbins N, Herre EA (2003) Inoculation of beneficial endophytic fungi into Theobroma cacao tissues. In: Proceedings of the 14th International Cocoa Research conference, Accra, II, pp 669–705Google Scholar
  125. Mejía LC, Rojas EI, Maynard Z, Van Bael S, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14CrossRefGoogle Scholar
  126. Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277PubMedCrossRefGoogle Scholar
  127. Morandi MAB, Sutton JC, Maffia LA (2000) Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. Eur J Plant Pathol 106:439–448CrossRefGoogle Scholar
  128. Muñoz-Elías EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644PubMedPubMedCentralCrossRefGoogle Scholar
  129. Murali TS (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2:147–155Google Scholar
  130. Nakasaki K, Sasaki M, Shoda M, Kubota H (1985) Change in microbial numbers during thermophilic composting of sewage sludge with reference to CO2 evolution rate. Appl Environ Microbiol 49:37–41PubMedPubMedCentralGoogle Scholar
  131. Naranjo-Briceño L, Pernía B, Guerra M, Demey JR, Sisto Á, Inojosa Y, González M, Fusella E, Freites M, Yegres F (2013) Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil. Microb Biotechnol 6:720–730PubMedPubMedCentralGoogle Scholar
  132. Narisawa K, Tokumasu S, Hashiba T, Ohki T (2000) Suppression of clubroot and Verticillium yellows in Chinese cabbage in the field by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 49:141–146CrossRefGoogle Scholar
  133. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335PubMedPubMedCentralCrossRefGoogle Scholar
  134. Nogueira SCP, Sandrim VC, Guimarães LHS, Jorge JA, Terenzi HF, Polizeli MLTM (2008) Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess Biosyst Eng 31:329–334CrossRefGoogle Scholar
  135. O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:1–18CrossRefGoogle Scholar
  136. Organization WHO (2011) World Health Organization global tuberculosis control. World Health Organization, GenevaGoogle Scholar
  137. Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28:299–314CrossRefGoogle Scholar
  138. Pandey PK, Singh S, Yadav RNS, Singh AK, Singh MCK (2014) Fungal endophytes: promising tools for pharmaceutical scienceGoogle Scholar
  139. Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York, pp 179–197CrossRefGoogle Scholar
  140. Poling SM, Wicklow DT, Rogers KD, Gloer JB (2008) Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J Agric Food Chem 56:3006–3009PubMedCrossRefGoogle Scholar
  141. Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kühn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69:1900–1902PubMedCrossRefGoogle Scholar
  142. Prado S, Buisson D, Ndoye I, Vallet M, Nay B (2013) One-step enantioselective synthesis of (4S)-isosclerone through biotransformation of juglone by an endophytic fungus. Tetrahedron Lett 54:1189–1191CrossRefGoogle Scholar
  143. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719PubMedCrossRefGoogle Scholar
  144. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510PubMedCrossRefGoogle Scholar
  145. Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-Ul-Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2:1CrossRefGoogle Scholar
  146. Qin S, Hussain H, Schulz B, Draeger S, Krohn K (2010) Two new metabolites, Epoxydine A and B, from Phoma sp. Helv Chim Acta 93:169–174CrossRefGoogle Scholar
  147. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefGoogle Scholar
  148. Rattan A, Kalia A, Ahmad N (1998) Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis 4:195PubMedPubMedCentralCrossRefGoogle Scholar
  149. Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716CrossRefGoogle Scholar
  150. Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209CrossRefGoogle Scholar
  151. Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2016) Endophytic bacterial community com-position in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405:381–396. CrossRefGoogle Scholar
  152. Robl D, da Silva Delabona P, Mergel CM, Rojas JD, dos Santos Costa P, Pimentel IC, Vicente VA, da Cruz Pradella JG, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94PubMedPubMedCentralCrossRefGoogle Scholar
  153. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416PubMedCrossRefPubMedCentralGoogle Scholar
  154. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefPubMedCentralGoogle Scholar
  155. Rodriguez EAE, Jonkers W, Corby KH, May G (2012) Interactions between Fusarium verticillioides, Ustilagomaydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet Biol 49:578–587CrossRefGoogle Scholar
  156. Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, Dos Santos DR, Azevedo JL, Cruz R, Romero JV, Cortina Guerrero H (1980) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom Disease. CATIE, TurrialbaGoogle Scholar
  157. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MP, Boulanger LA, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  158. Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5CrossRefGoogle Scholar
  159. Saikkonen K, Mikola J, Helander M (2015) Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Curr Sci 109:121–126Google Scholar
  160. Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99PubMedCrossRefGoogle Scholar
  161. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340PubMedCrossRefPubMedCentralGoogle Scholar
  162. Schulz B, Römmert A-K, Dammann U, H-Jür A, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283CrossRefGoogle Scholar
  163. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  164. Shaanker RU, Ramesha BT, Ravikanth G, Gunaga R, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of Nothapodytes nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system. In: Bioactive molecules and medicinal plants. Springer, Berlin, pp 197–213CrossRefGoogle Scholar
  165. Shalini S, Kotasthane AS (2007) Parasitism of Rhizoctonia solani by strains of Trichoderma spp. EJEAF Chem 6:2272–2281Google Scholar
  166. Shibuya H, Agusta A, Ohashi K, Maehara S, Simanjuntak P (2005) Biooxidation of (+)-catechin and (−)-epicatechin into 3, 4-dihydroxyflavan derivatives by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:866–867PubMedCrossRefGoogle Scholar
  167. Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122PubMedCrossRefGoogle Scholar
  168. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090PubMedCrossRefGoogle Scholar
  169. Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241:67–72PubMedCrossRefGoogle Scholar
  170. Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms – promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596PubMedPubMedCentralCrossRefGoogle Scholar
  171. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Sci York Then Washington 260:214CrossRefGoogle Scholar
  172. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544PubMedCrossRefGoogle Scholar
  173. Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244PubMedCrossRefGoogle Scholar
  174. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedPubMedCentralCrossRefGoogle Scholar
  175. Strobel G, Stierle A, Stierle D, Hess WM (1993) Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon 47:71–80Google Scholar
  176. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440PubMedCrossRefGoogle Scholar
  177. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950PubMedCrossRefGoogle Scholar
  178. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PCW, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183PubMedCrossRefGoogle Scholar
  179. Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discov Today 5:39–41PubMedCrossRefGoogle Scholar
  180. Strom PF (1985a) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905PubMedPubMedCentralGoogle Scholar
  181. Strom PF (1985b) Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50:906–913PubMedPubMedCentralGoogle Scholar
  182. Subban K, Subramani R, Johnpaul M (2013) A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat Prod Res 27:1445–1449PubMedCrossRefGoogle Scholar
  183. Suresh B, Ritu T, Ravishankar GA (2006) Biotransformations as applicable to food industries. Food Sci Technol York-Marcel Dekker 148:1655Google Scholar
  184. Sutjaritvorakul T, Whalley AJS, Sihanonth P, Roengsumran S (2011) Antimicrobial activity from endophytic fungi isolated from plant leaves in Dipterocarpus forest at Wiang Sa district Nan province, Thailand. J Agric Technol 7:115–121Google Scholar
  185. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedCrossRefPubMedCentralGoogle Scholar
  186. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050PubMedCrossRefPubMedCentralGoogle Scholar
  187. Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2006) Fungal endophyte assemblages from ethnopharmaceutically important medicinal trees. Can J Microbiol 52:427–435PubMedCrossRefPubMedCentralGoogle Scholar
  188. Tejesvi MV, Nalini MS, Mahesh B, Prakash HS, Kini KR, Shetty HS, Subbiah V (2007) New hopes from endophytic fungal secondary metabolites. Bol Soc Quím Méx 1:19–26Google Scholar
  189. Tiquia SM, Richard TL, Honeyman MS (2002) Carbon, nutrient, and mass loss during composting. Nutr Cycl Agroecosyst 62:15–24CrossRefGoogle Scholar
  190. Tondje PR, Hebbar KP, Samuels G, Bowers JH, Weise S, Nyemb E, Begoude D, Foko J, Fontem D (2006) Bioassay of Geniculosporium species for Phytophthora megakarya biological control on cacao pod husk pieces. Afr J Biotechnol 5:648Google Scholar
  191. Tripathi S, Kamal S, Sheramati I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. In: Mycorrhiza. Springer, Heidelberg, pp 281–306CrossRefGoogle Scholar
  192. Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934CrossRefGoogle Scholar
  193. Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82CrossRefGoogle Scholar
  194. Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138CrossRefGoogle Scholar
  195. Verpoorte R (2000) Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol 52:253–262PubMedCrossRefPubMedCentralGoogle Scholar
  196. Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009PubMedCrossRefPubMedCentralGoogle Scholar
  197. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789PubMedCrossRefPubMedCentralGoogle Scholar
  199. Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J Antibiot (Tokyo) 57:559–563CrossRefGoogle Scholar
  200. WCED (1987) Our common future by World Commission on Environment and Development (WCED). Oxford University Press, New York, p 383Google Scholar
  201. White JF, Belanger F, Meyer W, Sullivan RF, Bischoff JF, Lewis EA (2002) Clavicipitalean fungal epibionts and endophytes-development of symbiotic interactions with plants. Symbiosis 33:201–213Google Scholar
  202. Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microbe Interact 13:1027–1033PubMedCrossRefPubMedCentralGoogle Scholar
  203. Wilson D (1993) Fungal endophytes: out of sight but should not be out of mind. Oikos 68:379–384CrossRefGoogle Scholar
  204. Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microbiol Biotechnol 20:265–272CrossRefGoogle Scholar
  205. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674PubMedCrossRefPubMedCentralGoogle Scholar
  206. Xiao J, Zhang Q, Gao YQ, Shi XW, Gao JM (2014) Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azadirachta. Nat Prod Res 28:1388–1392PubMedCrossRefGoogle Scholar
  207. Yao M, Liu J-Z, Jin S, Jiao J, Gai Q, Wei Z, Fu Y, Zhao J (2014) A novel biotransformation of astragalosides to astragaloside IV with the deacetylation of fungal endophyte Penicillium canescens. Process Biochem 49:807–812CrossRefGoogle Scholar
  208. Yong YH, Dai CC, Gao FK, Yang QY, Zhao M (2009) Effects of endophytic fungi on growth and two kinds of terpenoids for Euphorbia pekinensis. Chin Tradit Herb Drug 40:1136–1139Google Scholar
  209. Zabalgogeazcoa I, Gundel PE, Helander M, Saikkonen K (2013) Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats. Fungal Divers 60:25–32CrossRefGoogle Scholar
  210. Zhang J, Zhang L, Wang X, Qiu D, Sun D, Gu J, Fang Q (1998) Microbial transformation of 10-deacetyl-7-epitaxol and 1β-hydroxybaccatin I by fungi from the inner bark of Taxus yunnanensis. J Nat Prod 61:497–500CrossRefGoogle Scholar
  211. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771PubMedCrossRefPubMedCentralGoogle Scholar
  212. Zhang Y, Zhang Y, Liu M, Shi X, Zhao Z (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46:624–632PubMedCrossRefPubMedCentralGoogle Scholar
  213. Zhang P, Zhou P-P, Yu L-J (2009a) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59:227–232PubMedCrossRefPubMedCentralGoogle Scholar
  214. Zhang W, Draeger S, Schulz B, Krohn K (2009b) Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp. Nat Prod Commun 4:1449–1454PubMedPubMedCentralGoogle Scholar
  215. Zhang XX, Li CJ, Nan ZB, Matthew C (2012) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70–78CrossRefGoogle Scholar
  216. Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1, 4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68:4863–4870PubMedPubMedCentralCrossRefGoogle Scholar
  217. Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rashmi Mishra
    • 1
  • V. Venkateswara Sarma
    • 1
  1. 1.Department of Biotechnology, School of Life SciencesPondicherry UniversityKalapetIndia

Personalised recommendations