Advertisement

Fungi Inhabiting in Hypersaline Conditions: An Insight

  • Abhishek Vashishtha
  • Gautam Kumar Meghwanshi
Chapter

Abstract

Until the last decade of the last century, it was believed that the contamination of food stuff preserved with salt is the only source of the halotolerant and halophilic fungi. After this era, it got established that many hypersaline lakes, solar salterns, etc. are natural habitats of such fungi. Many phylogenetically unrelated fungi were reported to grow in salty water with more than 30% NaCl concentration. A huge diversity of fungi from all the three major groups, viz., halophilic and halotolerant, xerotolerant, and sporadic, have been isolated all over the globe. Different species of Cladosporium, Aspergillus, Penicillium, Emericella, and Eurotium are some representative types of black yeast-like melanized fungi found in hypersaline conditions.

Many indigenous species like Aureobasidium pullulans, Debaryomyces hansenii, Hortaea werneckii, and Wallemia ichthyophaga have also been isolated universally from the natural hypersaline environments. D. hansenii, H. werneckii, and W. ichthyophaga have been considered as model organisms for learning eukaryotic halotolerance with Hortaea werneckii being the best studied. D. hansenii is ubiquitous fungi found in the oceans globally. W. ichthyophaga was reported in 2005 only and is most halophilic fungi described to date. For proper survival and to combat the ill effects of salinity, fungi inhabiting in hypersaline conditions employ various strategies like ion exchange, accumulation of compatible osmolytes, alterations in membrane fluidity, and many more. Their special characteristics make them a potent organism with ample biotechnological potential.

Keywords

Cladosporium Debaryomyces hansenii Hortaea Hypersalinity Osmolytes Penicillium Wallemia 

References

  1. Alba-Lois L, Segal C, Rodarte B, Valdes-Lopez V, DeLuna A, Cardenas R (2004) NADP-glutamate dehydrogenase activity is increased under hyperosmotic conditions in the halotolerant. Curr Microbiol 48(1):68–72CrossRefPubMedGoogle Scholar
  2. Ali I, Prasongsuk S, Akbar A, Aslam M, Lotrakul P, Punnapayak H, Rakshit SK (2016a) Hypersaline habitats and halophilic microorganisms. Maejo Int J Sci Technol 10(03):330–345Google Scholar
  3. Ali I, Siwarungson N, Punnapayak H, Lotrakul P, Prasongsuk S, Bankeeree W, Rakshit SK (2016b) Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi Province, Thailand. Pak J Bot 46(3):983–988Google Scholar
  4. Aliasgharzadeh N, Saleh RN, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122CrossRefPubMedGoogle Scholar
  5. Almagro A, Prista C, Castro S, Quintas C, Madeira-Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56:191–197CrossRefPubMedGoogle Scholar
  6. Almagro A, Prista C, Benito B, Loureiro-Dias MC, Ramos J (2001) Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 183:3251–3255CrossRefPubMedPubMedCentralGoogle Scholar
  7. Atlas RM, Di Menna ME, Cameron RE (1978) Ecological investigations of yeasts in Antarctic soils. Antarct Res Ser 30:27–34CrossRefGoogle Scholar
  8. Axelson-Fisk M, Sunnerhagen P (2006) Comparative genomics and gene finding in fungi. In: Sunnerhagen P, Piskur J (eds) Topics in current genetics: comparative genomics. Using fungi as models. Springer, Heidelberg, pp 1–28Google Scholar
  9. Barnett JA, Payne RW, Yarrow D (2000) In: Barnett JA, Payne RW, Yarrow D (eds) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  10. Bonifaz A, Badali H, de Hoog GS, Cruz M, Araiza J, Cruz MA, Ponce RM (2008) Tinea nigra by Hortaea werneckii, a report of 22 cases from Mexico. Stud Mycol 61:77–82CrossRefPubMedPubMedCentralGoogle Scholar
  11. Breuer U, Harms H (2006) Debaryomyces hansenii – an extremophilic yeast with biotechnological potential. Yeast 23(6):415–437CrossRefPubMedGoogle Scholar
  12. Bridge P, Spooner B, Roberts P (2007) List of non-lichenized fungi from the Antarctic region. http://www.antarctica.ac.uk/Resources/BSD/Fungi/Speciespublic2.html#Lich
  13. Brundrett M (1991) Mycorrhizas in natural ecosystem. Adv Ecol Res 21:300–313Google Scholar
  14. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMSMicrobiol Lett 244:229–234CrossRefGoogle Scholar
  15. Butinar L, Sonjak S, Zalar P, Plemenita A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 1:73–79Google Scholar
  16. Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005c) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166CrossRefPubMedGoogle Scholar
  17. Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters: a potential source of foodborne toxigenic aspergilla and penicillia. FEMS Microbiol Ecol 77:186–199CrossRefPubMedGoogle Scholar
  18. Cantrell SA, Casillas L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular technique. Mycol Res 110:962–970CrossRefPubMedGoogle Scholar
  19. Cantrell SA, Dianese JC, Fell J, Gunde-Cimerman N, Zalar P (2011) Unusual fungal niches. Mycologia 103:1161–1174CrossRefPubMedGoogle Scholar
  20. Cantrell SA, Tkavc R, Gunde-Cimerman N, Zalar P, Acevedo M, Báez-Félix C (2013) Fungal communities of young and mature hypersaline microbial mats. Mycologia 105:827–836CrossRefPubMedGoogle Scholar
  21. Carvalho LM, Correia PH, Martins-Loucao A (2001) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170CrossRefGoogle Scholar
  22. Cong YS, Yarrow D, Li YY, Fukuhara H (1994) Linear DNA plasmids from Pichia etchellsii, Debaryomyces hansenii and Wingea robertsiae. Microbiologica 140:1327–1335Google Scholar
  23. Corredor M, Davila AM, Casarégola S, Gaillardin C (2003) Chromosomal polymorphism in the yeast species Debaryomyces hansenii. Antonie Van Leeuwenhoek 84:81–88CrossRefPubMedGoogle Scholar
  24. Di Menna ME (1966) Yeasts in Antarctic soils. Antonie Van Leeuwenhoek 32:29–38CrossRefPubMedGoogle Scholar
  25. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I et al (2004) Genome evolution in yeasts. Nature 430:35–44CrossRefPubMedGoogle Scholar
  26. Forrest SI, Robinow CF, Lachance MA (1987) Nuclear behaviour accompanying ascus formation in Debaryomyces polymorphus. Can J Microbiol 33:967–970CrossRefGoogle Scholar
  27. Fukuda K, Jin-Shan C, Kawano M, Sudo K, Gunge N (2004) Stress responses of linear plasmids from Debaryomyces hansenii. FEMS Microbiol Lett 237:243–248PubMedGoogle Scholar
  28. Gasparic MB, Lenassi M, Gostinar C, Rotter A, Plemenita A, Gunde-Cimerman N, Gruden K, Že J (2013) Insertion of a specific fungal 3′-phosphoadenosine-5′-phosphatase motif into a plant homologue improves halotolerance and drought tolerance of plants. PLoS One  https://doi.org/10.1371/journal.pone.0081872
  29. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128CrossRefPubMedGoogle Scholar
  30. Gonzalez-Hernandez JC, Cardenas-Monroy CA, Pena A (2004) Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast 21:403–412CrossRefPubMedGoogle Scholar
  31. González-Hernández JC, Jiménez-Estrada M, Pena A (2005) Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. Extremophiles 9:7–16CrossRefPubMedGoogle Scholar
  32. Gori K, Mortensen HD, Arneborg N, Jespersen L (2005) Expression of the GPD1 and GPP2 orthologous and glycerol retention during growth of Debaryomyces hansenii at high NaCl concentrations. Yeast 22:1213–1222CrossRefPubMedGoogle Scholar
  33. Gostinar C, Gunde-Cimerman N, Turk M (2012) Genetic resources of extremotolerant fungi: a method for identification of genes conferring stress tolerance. Bioresour Technol 111:360–367CrossRefGoogle Scholar
  34. Gostincar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 7:12–11Google Scholar
  35. Gostincar C, Lenassi M, Gunde-Cimerman N, Plemenita A (2011) Fungal adaptation to extremely high salt concentrations. Adv Appl Microbiol 77:71–96CrossRefPubMedGoogle Scholar
  36. Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1995) Mycoflora of soil around the Dead Sea. Syst Appl Microbiol 18:318–322CrossRefGoogle Scholar
  37. Gunde-Cimerman N, Plemenita A (2006) Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Rev Environ Sci Biotechnol 5:323–331CrossRefGoogle Scholar
  38. Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52(2):170–179Google Scholar
  39. Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenita A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  40. Gunde-Cimerman N, Frisvad JC, Zalar P, Plemenitas A (2005) Halotolerant and halophilic fungi. In: Deshmukh SK, Rai MK (eds) Biodiversity of fungi – their role in human life. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, pp 69–128Google Scholar
  41. Gunde-Cimerman N, Amos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res.  https://doi.org/10.1016/j.mycres.2009.09.002
  42. Gunge N, Fukuda K, Morikawa S, Murakami K, Takeda M, Miwa A (1993) Osmophilic linear plasmids from the salt-tolerant yeast Debaryomyces hansenii. Curr Genet 23:443–449CrossRefPubMedGoogle Scholar
  43. Gunny AAN, Arbain D, Jamal P, Gumba RE (2015) Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi J Biol Sci 22(4):476–483CrossRefPubMedGoogle Scholar
  44. Harisnaut P, Poonsopa D, Roengmongkol K, Charoensataporn R (2003) Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia 29:109–113CrossRefGoogle Scholar
  45. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation methods. Enzymologia 428:29–45CrossRefGoogle Scholar
  47. Imran A, Akbar A, Yanwisetpakdee B, Prasongsuk S, Lotrakul P, Hunsa Punnapayak H (2014) Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-Amylase from an obligate halophilic Aspergillus gracilis. BioMed Res Inter. 7 pages. Article ID 106937Google Scholar
  48. Jiang Y, Shang Y, Yang K, Wan H (2016) Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals. Appl Microbiol Biotechnol 100(4):1883–1890CrossRefPubMedGoogle Scholar
  49. Kogej T, Gostinar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3(2):105–110CrossRefGoogle Scholar
  50. Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153:4261–4273CrossRefPubMedGoogle Scholar
  51. Kohlmeyer J, Kohlmeyer BV (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61CrossRefGoogle Scholar
  52. Konte T, Terpitz U, Plemenitas A (2016) Reconstruction of the high-osmolarity glycerol (HOG) signaling pathway from the halophilic fungus Wallemia ichthyophaga in Saccharomyces cerevisiae. Front Microbiol 7:901CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lenassi M, Zajc J, Gostincar C, Gorjan A, Gunde-Cimerman N, Plemenitas A (2011) Adaptation of the glycerol-3-phosphate dehydrogenase Gpd1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga. Fungal Biol 115(10):959–970CrossRefPubMedGoogle Scholar
  54. Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C (2013) Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 8:e71328CrossRefPubMedPubMedCentralGoogle Scholar
  55. Marth EH (1978) Dairy products. In: Beuchat LR (ed) Food and beverages mycology. AVI, Westport, pp 145–172Google Scholar
  56. Montiel V, Ramos J (2007) Intracellular Na+ and K+ distribution in Debaryomyces hansenii. Cloning and expression in Saccharomyces cerevisiae of DhNHX1. FEMS Yeast Res 7:102–109CrossRefPubMedGoogle Scholar
  57. Mortensen HD, Gori K, Siegumfeldt H, Nissen P, Jespersen L, Arneborg N (2006) Intracellular pH homeostasis plays a role in the NaCl tolerance of Debaryomyces hansenii strains. Appl Microbiol Biotechnol 71:713–719CrossRefPubMedGoogle Scholar
  58. Nakase T, Suzuki M, Phaff HJ, Kurtzman CP (1998) Debaryomyces Lodder and Kreger-van Rij Nom. Cons. In: Cletus Kurtzman P, Fell JW (eds) The yeasts – a taxonomic study, 4th edn. Elsevier Science Publishers, Amsterdam, pp 157–173Google Scholar
  59. Newell SY (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206CrossRefGoogle Scholar
  60. Northolt MD, Frisvad JC, Samson RA (1995) Occurrence of foodborne fungi and factors for growth. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction to food- borne fungi. CBS, Delft, pp 243–250Google Scholar
  61. Oren A (2002) Halophilic microorganisms and their environments. In: COLE Series 5. Kluwer Academic Publishers, Dordrecht, 575 ppGoogle Scholar
  62. Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine- like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Let 269:1–10CrossRefGoogle Scholar
  63. Padamsee M, Kumar TKA, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49:217–226CrossRefPubMedGoogle Scholar
  64. Papouskova K, Sychrova H (2007) The co-action of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells. Int J Food Microbiol 118:1–7CrossRefPubMedGoogle Scholar
  65. Park HG, Managbanag JR, Stamenova EK, Jong SC (2004) Comparative analysis of common indoor Cladosporium species based on molecular data and conidial characters. Mycotaxon 89:441–451Google Scholar
  66. Pavitra S, Anuradha S, Nupur M (2017) Introduction to halophiles. Inter J Multidis App Stud 04(1):43–60Google Scholar
  67. Petrovic U, Gunde-Cimerman N, Plemenitas A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45:665–672CrossRefGoogle Scholar
  68. Plemenitas A, Vaupotic T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75CrossRefPubMedPubMedCentralGoogle Scholar
  69. Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J, Gostinčar C, Gunde-Cimerman N (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:199PubMedPubMedCentralGoogle Scholar
  70. Plemenitas A, Konte T, Cene Gostinčar C, Gunde Cimerman N (2016) Transport systems in Halophilic Fungi. Adv Exp Med Biol 892:307–325CrossRefPubMedGoogle Scholar
  71. Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63:4005–4009PubMedPubMedCentralGoogle Scholar
  72. Prista C, Loureiro-Dias MC, Montiel V, Garcıa R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701CrossRefPubMedGoogle Scholar
  73. Prista C, González-Hernández JC, Ramos J, Loureiro-Dias MC (2007) Cloning and characterization of two Kþ transporters of Debaryomyces hansenii. Microbiology 153:3034–3043CrossRefPubMedGoogle Scholar
  74. Ramirez-Orozco M, Hernandez-Saavedra NY, Ochoa JL (2001) Debaryomyces hansenii growth in nonsterile seawater ClO2 –peptone-containing medium. Can J Microbiol 47:676–679CrossRefPubMedGoogle Scholar
  75. Rani MHS, Ramesh T, Subramanian J, Kalaiselvam M (2013) Production and characterization of melanin pigment from halophilic black yeast Hortaea werneckii. Int J Pharma Res Rev 2(8):9–17Google Scholar
  76. Rodríguez-Navarro A, Benito B (2010) Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase. Biochim Biophys Acta 1798(10):1841–1853CrossRefPubMedGoogle Scholar
  77. Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF (2007) Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardization of methods for Cladosporium taxonomy and diagnostics. Stud Mycol 58:105–156CrossRefPubMedPubMedCentralGoogle Scholar
  78. Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517CrossRefPubMedGoogle Scholar
  79. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32Google Scholar
  80. Sterflinger K (1998) Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Van Leeuwenhoek 74:271–281CrossRefPubMedGoogle Scholar
  81. Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22Google Scholar
  82. Thomé PE (2005) Heterologous expression of glycerol 3-phosphate dehydrogenase gene (DhGPD1) from the osmotolerant yeast Debaryomyces hansenii in Saccharomyces cerevisiae. Curr Microbiol 71:713–719Google Scholar
  83. Tressner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213Google Scholar
  84. Turk M, Abramovi Z, Plemenita A, Gunde-Cimerman N (2007) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7(4):550–557CrossRefPubMedGoogle Scholar
  85. Vaupoti T, Gunde-Cimerman N, Plemenita A (2007) Novel 3′-phosphoadenosine-5′-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genet Biol 44:1109–1122CrossRefGoogle Scholar
  86. Vaupotic T, Plemenitas A (2007) Osmoadaptation-dependent activity of microsomal HMG-CoA reductase in the extremely halotolerant black yeast Hortaea werneckii is regulated by ubiquitination. FEBS Lett 581(18):3391–3395CrossRefPubMedGoogle Scholar
  87. Wasser SP, Grishkan I, Kis-Papo T, Buchalo AS, Volz PA, Gunde-Cimerman N, Zalar P, Nevo E (2003) Species diversity of the dead sea. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the dead sea. ARG Ganter Verlag K.-G, Ruggell, pp 203–270Google Scholar
  88. Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249CrossRefPubMedGoogle Scholar
  89. Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostin Ar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: Haloadaptations present and absent. BMC Genomics 14:617CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zajca J, Kogeja T, Galinskib EA, Ramosc J, Gunde-Cimerman N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80(1):247–256CrossRefGoogle Scholar
  91. Zalar P, de Hoog GS, Gunde-Cimerman N (1999) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62Google Scholar
  92. Zalar P, de Hoog GS, Schroers HJ, Frank JM, Gunde-Cimerman N (2005a) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl Et ord nov). Antonie Van Leeuwenhoek 87:311–328CrossRefPubMedGoogle Scholar
  93. Zalar P, Kocuvan MA, Plemenita A, Gunde-Cimerman N (2005b) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326CrossRefGoogle Scholar
  94. Zalar P, de Hoog GS, Schroers HJ, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zalar P, Frisvad JC, Gunde-Cimerman N, Varga J, Samson RA (2008) Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100:779–795CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Abhishek Vashishtha
    • 1
  • Gautam Kumar Meghwanshi
    • 1
  1. 1.Department of MicrobiologyM.G.S. UniversityBikanerIndia

Personalised recommendations