Advertisement

Biopigments: Fungal Pigments

  • Sharmila Tirumale
  • Nazir Ahmad Wani
Chapter

Abstract

Synthetic dyes are frequently used in different fields such as for food industry, paper and agricultural industry and science and technology. But due to the adverse toxicological side effects of synthetic pigments used in the industries, now research is focused on the products from natural resources. Microbial compounds are natural-coloured substances produced by microorganisms, especially fungi and bacteria. Biopigments from natural resources can replace the synthetic dyes used in pharma industries. Most of the microbes reported to produce carotenoids belong to Myxococcus spp. Other organisms include spp. of Serratia, Streptomyces and Agrobacterium. The red-coloured basidiomycetous yeast Xanthophyllomyces dendrorhous, green alga Haematococcus Pluvialis and Agrobacterium aurantiacum are known to produce astaxanthin, an orange-red pigment. Other organisms such as Serratia marcescens, Vibrio psychoerythrus, Rugamonas rubra, Streptoverticillium rubrireticuli and other eubacteria produce prodigiosin, a red pigment used in various applications. Astaxanthin from Xanthophyllomyces sp., arpink red from Penicillium sp. and riboflavin from Ashbya sp. and pigments from Monascus spp. are used in many food industries. Other pigment-producing fungi are chaetomium cupreum, Penicillium aculeatum, Fusarium chlamydosporum, etc. Fungi produce an interesting class of pigmented secondary metabolites, called azaphilones. Recently many pharmaceutical industries are using microbial pigments in their products. Microbial pigments produced by pharmaceutical industry may act as antibiotics, anticancer, antiproliferative and immunosuppressive compounds.

Keywords

Fungi Pigments 

References

  1. Akihisa et al (2005) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers 2(10):1305–1309CrossRefPubMedGoogle Scholar
  2. Andersesen DO, Weber ND, WoodS G, Hughes BG, Murray BK, North JA (1991) In vitro virucidal activity of selected anthraquinones and anthraquinones derivatives. Antivir Res 16(2):185–196CrossRefGoogle Scholar
  3. Blanc PJ, Loret MO, Santerre AL, Pareilleux A, Prome JC, Laussac JP, Goma G (1994) Pigments of Monascus. J Food Sci 59:862–865CrossRefGoogle Scholar
  4. Britton G et al (2004) Carotenoids- handbook. Birkhauser. ISBN:3-7643-6180-8Google Scholar
  5. Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufosse L (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193CrossRefPubMedCentralGoogle Scholar
  6. Casta FTM, Justo GZ, Duran N, Noguerira PA, Lopes SCP (2005) The use of violacein in its free and encapsulated form in polymeric systems against malaria. Brazilian Patent PIBr.056399-0Google Scholar
  7. Cera-Olmedo E (2001) Phycomyces and the biology of light and color. FEMS Microbiol Rew 25:503–512CrossRefGoogle Scholar
  8. Chang JC, Wu MC, Liu IM, Cheng JT (2006) Plasma glucose-lowering action of Hon-Chi in streptozotocin-induced diabetic rats. Horm Metab Res 38:76–81CrossRefPubMedGoogle Scholar
  9. Chew BP, Park JS, Wong MW, Wong TS (1998) A comparison of the anticancer activities of beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res 19(3a):1849–1853Google Scholar
  10. Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA (2012) Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol 78:4771–4780CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deorukhar AA, Chander R, Ghosh SB, Sainis KB (2007) Identification of a red pigment bacterium producing a potent anti-tumor N-alkylated prodigiosin as Serratia Marcescens. Res Microbiol 158(5):399–404CrossRefGoogle Scholar
  12. Di-Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274(2):532–538CrossRefPubMedGoogle Scholar
  13. Dong J et al (2006) New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria. Microbiol Lett 264(1):65–79CrossRefGoogle Scholar
  14. Dufosse L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–321Google Scholar
  15. Dufosse L (2009) Pigments. Microb Encylopedia Microbiol 4:457–471CrossRefGoogle Scholar
  16. Dufosse L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large scale production of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61CrossRefPubMedGoogle Scholar
  17. Duncan SJ et al (2001) Isolation and structure elucidation of Chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 123(4):554–560CrossRefPubMedGoogle Scholar
  18. Duran M, Ponezi AN, Faljoni-Alario A, Teixerira MF, Justo GJ, Duran N (2012) Potential application of violacein: a microbial pigment. Med Chem Res 21(7):1524–1532CrossRefGoogle Scholar
  19. Fatima N, Kalsoom A, Mumtaz A, Muhammad SA (2014) Computational drug designing of fungal pigments as potential aromatase inhibitors. Bangladesh J Pharmacol 9:575–579CrossRefGoogle Scholar
  20. Feher D, Barlow RS, Lorenzo PS, Hemscheidt T (2008) A 2-substituted prodiginine, 2-(p-hydroxybenzyl) prodigiosin from Pseudoalteromonas rubra. J Nat Prod 71(11):1970–1972CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanism of violacein mediated human leukemia cell death. Blood 104:1459–1467CrossRefPubMedGoogle Scholar
  22. Florencio JA, Soccol CR, Furlanetto LF, Biofilm TMB, Krieger N, Baron M, Fontana JD (1998) A factorial approach for a sugarcane juice based low cost culture medium: increasing the astaxanthin production by the red yeast Phaffia rhodozyma. Bioprocess Eng 19:161–164Google Scholar
  23. Flores-Cotera LB, Sanchez S (2001) Copper but not iron limitation increases astaxanthin production by Phaffia rhodozyma in a chemically defined medium. Biotechnol Lett 23:793–797CrossRefGoogle Scholar
  24. Furstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Chem Int Ed Engl 42:3582–3603CrossRefGoogle Scholar
  25. Garton GA, Goodwin TW, Lijinsky W (1951) General conditions governing //-carotene synthesis by the fungus Phycomyces blakesleeanus Burgeff. Biochem J 48:154–163CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gerber NN, Ammar MS (1979) New antibiotic pigments related to fusarubin from Fusarium solani (Mart.) Sacc. II. Structure elucidations. J Antibiot 32:685–688CrossRefPubMedGoogle Scholar
  27. Gill M, Steglich W (1987) Pigments of fungi (macromycetes). Prog Chem Org Nat Prod 51:1Google Scholar
  28. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002) A prospective study of tomato products, lycopene and prostate cancer risk. J Nat Cancer Inst 94(5):391–398CrossRefPubMedGoogle Scholar
  29. Gupta C, Sharma D, Aggarwal S, Nagpal N (2013) Pigment production from Trichoderma spp. for dyeing of silk and wool. IJSN 4(2):351–355Google Scholar
  30. Hammond RK, White DC (1970) Inhibition. Inhibition of carotenoid hydroxylation in Staphylococcus aureus by mixed-function inhibitors. J Bacteriol 103:607–610PubMedPubMedCentralGoogle Scholar
  31. Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of daldinins A.apprx.C, three novel azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem Pharm Bull 42:2397–2379CrossRefGoogle Scholar
  32. Hellwig V, Ju YM, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Prog 4:39–54CrossRefGoogle Scholar
  33. Hobbs C (2003) Medicinal mushrooms: an exploration of tradition, health and culture. Botanica Press, SummertownGoogle Scholar
  34. Hsu LC, Hsu YW, Liang YH, Kuo YH, Pan TM (2011) Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from Monascus purpureus NTU 568. J Agri Food Chem 59(4):1124–1130CrossRefGoogle Scholar
  35. http://www. Transparencymarketresearch.com/natural-colours-market.html (n.d.). Food additives market- global industry analysis, size, growth, trends and forecast 2012–2018. Transparency Market Research – Publications, New YorkGoogle Scholar
  36. Hwanmook K, Sangbae H, Changwoo L, Kihoon L, Sehyung P, Youngkook K (2006) Use of prodigiosin for treating diabetes mellitus. US Patent 6638968Google Scholar
  37. Iacobucci GA, Sweeney LG (1981) Process for enhancing the sunlight stability of rubrolone US Patent 4:285–985Google Scholar
  38. Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51:68–75CrossRefPubMedGoogle Scholar
  39. Kim H, Han SB, Lee OW, Lee K, Park S, Kim Y (1989) Use of prodigiosin for treating diabetes mellitus. US Patent 6 (1989) 638, 968 B1. 33Google Scholar
  40. Kim CH, Kim SW, Hong SI (1999a) An integrated fermentation separation process for the production of red pigment by Serratia sp. KH-95. Process Biochem 35:485–490CrossRefGoogle Scholar
  41. Kim HS, Hayashi HJ, Shibata Y (1999b) Cycloprodigiosin hydrochloride obtained from Pseudoalteromonas denitrificans in a potent antimalarial agent. Biol Pharm Bull 22(5):532–534CrossRefPubMedGoogle Scholar
  42. Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JCH (2006) Violacein synergistically increases 5- fluorouracil cytotoxicity, induces apoptosis and inhibits akt mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27:508–516CrossRefPubMedGoogle Scholar
  43. Konzen M, De Marco D, Cordova CA, Vieira TO, Antonio AV, Creezynski-Pasa TB (2006) Antioxidant properties of violacein: possible relation on its biological function. Bioorg Med Chem 14(24):8307–8313CrossRefPubMedGoogle Scholar
  44. Lampila LE, Wallen SE, Bullerman LB (1985) A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia 90:65–80CrossRefPubMedGoogle Scholar
  45. Lichstein HC, van De Sand VF (1946) The antibiotic activity of violacein, prodigiosin, and phthiocol. J Bacteriol 52:145–146PubMedPubMedCentralGoogle Scholar
  46. Mapari SAS, Meyer AS, Thrane UJ (2006a) Agric Food Chem 54:7027CrossRefGoogle Scholar
  47. Mapari SAS, Meyer AS, Thrane U (2006b) Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem 54(19):7028–7035CrossRefGoogle Scholar
  48. Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. J Agric Food Chem 56:9981–9989CrossRefPubMedGoogle Scholar
  49. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Factories 8:24CrossRefGoogle Scholar
  50. Martin S, Giannone G, Andriantsitohaina R, Martinez MC (2003) Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharm 39:1095–1102CrossRefGoogle Scholar
  51. Mathews-Roth MM (1982) Antitumor activity of β-carotene, canthaxanthin and phytoene. Oncology 39(1):33–37CrossRefPubMedGoogle Scholar
  52. Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S et al (2004) Impact of violacein producing bacteria on survival and feeding of Bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mintel/Leatherhead Food Research (2011) http://www. Food coloors, market, technical and regulatory insightsGoogle Scholar
  54. Nakamura Y, Sawada T, Morita Y, Tamiya E (2003) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12:79–86CrossRefGoogle Scholar
  55. Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315CrossRefGoogle Scholar
  56. Palanichamy V, Hundet A, Mitra B, Reddy N (2011) Optimization of cultivation parameters for growth and pigment Production by streptomyces spp. isolated from marine sediment and rhizosphere soil. Int J Plant Anim Envir Sci 1(3):158–170Google Scholar
  57. Pandey R, Chander R, Sainis KB (2007) Prodigiosins A novel family of immunosuppressants with anticancer activity. Ind J Biochem Biophys 44:295–302Google Scholar
  58. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301CrossRefPubMedGoogle Scholar
  59. Park et al (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252(2):309–313CrossRefPubMedGoogle Scholar
  60. Prathumpai W, Phimmakong K, Srikitikulchai P, Wongsa P (2006) Kinetic study of naphthoquinone and key metabolite production of C unilateralis BCC 1869. Thai J Biotechnol 7(2):39–43Google Scholar
  61. Reyes FG, Valim MF, Vercesi AE (1996) Effect of organic synthetic food colours on mitochondrial respiration. Food Addit Contam 13(1):5–11CrossRefPubMedGoogle Scholar
  62. Sakaki H, Nakanishi T, Satonaka KY, Miki W, Fujita T, Komemushi S (2000) Properties of high to rularhodin producing mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng 89:203–205CrossRefPubMedGoogle Scholar
  63. Sánchez C, Brana AF, Méndez C, Salas JA (2006) Re- evaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. Chem Bio Chem 7:1231–1240CrossRefPubMedGoogle Scholar
  64. Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile dyeing. Indian J Fibre Text Res 37:68–73Google Scholar
  65. Soumya K, Narasimha Murthy K, Sreelatha GL, Srinivas C, Sharmila T (2013) Influence of growth factors on pigmentation of Chaetomium cupreum SS – 02 and the antibacterial efficacy of the pigment against Ralstonia solanacearum. Int J Adv Res 1(10):212–219Google Scholar
  66. Stadler M et al (1995) Novel bioactive azaphilones from fruit bodies and mycelial cultures of the ascomycete Bulgaria inquinans (Fr.). Nat Prod Lett 7(1):7–14CrossRefGoogle Scholar
  67. Starr MP (1958) The blue pigment of Corynebacterium insidiosum. Arch Mikrobiol 30:25–334CrossRefGoogle Scholar
  68. Stevenson CS, Capper EA, Roshak AK (2002) Scytonemin- a marine natural product inhibitor of kinases key in hyperproliferation inflammatory diseases. Inflamm Res 51(12):112–114CrossRefPubMedGoogle Scholar
  69. Strudikova M et al (2000) Mikrobialna produkcia farbnych azaphilonovych metabolitov. Chem List 94:105–110Google Scholar
  70. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2014) Microbial pigment as natural color sources: current trends and future perspectives. J Food Sci Technol.  https://doi.org/10.1007/s13197-014-1601-6
  71. Ungureanu C, Ferdes M (2012) Evaluation of antioxidant and antimicrobial activities of torularhodin. Adv Sci Lett 18(1):50–53CrossRefGoogle Scholar
  72. Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Electron J Biol 5(3):49–61Google Scholar
  73. Vidyalakshmi R, Paranthaman R, Murugesh S, Singaravadivel K, Carroll PO (1999) Microbial bioconversion of rice broken to food grade pigments naturally exciting colours. World Ingred 12:39–42Google Scholar
  74. Wang J, Lu Z, Chi J (1997) Multicenter clinical trial of the serum lipid-lowering effects of a Monascus purpureus (red yeast) rice preparation from traditional Chinese medicine. Curr Ther Res 58(12):64–78CrossRefGoogle Scholar
  75. Wissgott U, Bortlik K (1996) Prospects for new natural food colorants. Trends Food Sci Technol 7:298–302CrossRefGoogle Scholar
  76. Zhao DH, Lu L, Qin HL (1998) Studies on the properties of a microbial blue pigment. Food Ferment Ind 5:21–24Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sharmila Tirumale
    • 1
  • Nazir Ahmad Wani
    • 1
  1. 1.Department of Microbiology and BiotechnologyBangalore UniversityBenguluruIndia

Personalised recommendations