Advertisement

Bio-valorization of Dairy Whey for Bioethanol by Stress-Tolerant Yeast

  • Deepansh Sharma
  • Mehak Manzoor
  • Parul Yadav
  • Jagdip Singh Sohal
  • Gajender Kumar Aseri
  • Neeraj Khare
Chapter

Abstract

Ethanol as a fuel has been used during the course of mankind industrial and social history. But due to the tax burden on ethanol and the cheaper cost of kerosene oil, it quickly substitutes ethanol. Ethanol is obtained by anaerobic fermentation by preferably yeast using sugars. Various different agro-industrial residues were used for the production of bioethanol at pilot scale. One important substrate, i.e., lactose, mainly present in milk and recognized as a huge unexplored waste remains from all the different kinds of cheese produced worldwide by the dairy processing sector. The global production of cheese whey is over 160 million tons production per year, showing a 1–2% annual growth rate. During fermentation of sugar to ethanol, yeast strains have to be capable to endure certain physiological stress and still growing actively at economically and in principle suitable standards. The future of ethanol production using stress-tolerant yeast to make the process more economically viable is very important. Utilization of high gravity substrate like concentrated cheese whey required the yeast strains with better and higher osmotolerant strains.

Keywords

Bioethanol Whey Yeast Stress tolerance Dairy industry 

References

  1. Abe H, Fujita Y, Takaoka Y, Kurita E, Yano S, Tanaka N, Nakayama KI (2009) Ethanol-tolerant saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreadingdeficient DNA polymerase δ. J Biosci Bioeng 108(3):199–204PubMedCrossRefGoogle Scholar
  2. Ali M et al (2014) Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. J Biol Chem 289(40):27625–27639PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson PJ, McNeil K, Watson K (1986) High-efficiency carbohydrate fermentation to ethanol at temperatures above 40 C by kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl Environ Microbiol 51(6):1314–1320PubMedPubMedCentralGoogle Scholar
  4. Ansanay-Galeote V, Blondin B, Dequin S, Sablayrolles JM (2001) Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol Lett 23(9):677–681Google Scholar
  5. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198PubMedCrossRefGoogle Scholar
  6. Arthur H, Watson K, McArthur CR, Clark-Walker GD (1978) Naturally occurring respiratory deficient Candida slooffii strains resemble petite mutants. Nature 271(5647):750PubMedCrossRefGoogle Scholar
  7. Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15(13):1351–1357Google Scholar
  8. Balakumar S, Arasaratnam V (2014) Enhanced production of ethanol by high gravity glucose fermentation at temperatures above 40 oC by saccharomyces cerevisiae S1 using a soya flour supplemented medium. J Natl Sci Found Sri Lanka 42(2):111–117CrossRefGoogle Scholar
  9. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282CrossRefGoogle Scholar
  10. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848CrossRefGoogle Scholar
  11. Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52 C and producing ethanol at 45 C and 50 C. World J Microbiol Biotechnol 8(3):259–263PubMedCrossRefGoogle Scholar
  12. Bastos VD (2007) Etanol, alcoolquímica e biorrefinarias. BNDES Setorial 25:5–38Google Scholar
  13. Becerra M, Baroli B, Fadda AM, Mendez JB, Siso MG (2001) Lactose bioconversion by calcium-alginate immobilization of Kluyveromyces lactis cells. Enzym Microb Technol 29(8):506–512CrossRefGoogle Scholar
  14. Beney L, de Maranon IM, Marechal PA, Gervais P (2000) Influence of thermal and osmotic stresses on the viability of the yeast Saccharomyces cerevisiae. Int J Food Microbiol 55(1):275–279PubMedCrossRefGoogle Scholar
  15. Benschoter AS, Ingram LO (1986) Thermal tolerance of Zymomonas mobilis: temperature-induced changes in membrane composition. Appl Environ Microbiol 51(6):1278–1284PubMedPubMedCentralGoogle Scholar
  16. Blomberg A, Adler L (1992) Physiology of Osmotolerance in Fungi1. Adv Microb Physiol 33:145–212 Academic PressPubMedCrossRefGoogle Scholar
  17. Brady D, Nigam P, Marchant R, Singh D, McHale AP (1997) The effect of Mn 2+ on ethanol production from lactose using Kluyveromyces marxianus IMB3 immobilized in magnetically responsive matrices. Bioprocess Biosyst Eng 17(1):31–34Google Scholar
  18. Brethauer S, Wyman CE (2010) Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101(13):4862–4874PubMedCrossRefGoogle Scholar
  19. Briggs DE, Boulton CA, Brookes PA, Stevens R (2004) Native african beers. In: Stevens R (ed) Brewing: science and practice. CRC Press, Cambridge, pp 589–605Google Scholar
  20. Brooks AA (2008) Ethanol production potential of local yeast strains isolated from ripe banana peels. Afr J Biotechnol 7(20):3752–3755Google Scholar
  21. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12(2):323–337PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS (2007) Fermentation of molasses by zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98(15):2824–2828PubMedCrossRefGoogle Scholar
  23. Chan WC, Su MQ (2008) Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter. Bioresour Technol 99(17):8016–8021PubMedCrossRefGoogle Scholar
  24. Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45(1):569–606PubMedCrossRefGoogle Scholar
  25. D’Amore TONY, Panchal CJ, Stewart GG (1988) Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 54(1):110–114Google Scholar
  26. D’Amore T, Celotto G, Russell I, Stewart GG (1989) Selection and optimization of yeast suitable for ethanol production at 40 C. Enzym Microb Technol 11(7):411–416Google Scholar
  27. Da Rosa AV (2009) Fundamentals of renewable energy processes. Academic, BurlingtonGoogle Scholar
  28. Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energ Conver Manag 50(7):1746–1176CrossRefGoogle Scholar
  29. de Souza CJ, Costa DA, Rodrigues MQ, dos Santos AF, Lopes MR, Abrantes AB et al (2012) The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresour Technol 109:63–69PubMedCrossRefGoogle Scholar
  30. De Wit JN (2001) Lecturer’s handbook on whey and whey products. European Whey Products Association, BrusselsGoogle Scholar
  31. Detroy RW, St Julian G (1982) Biomass conversion: fermentation chemicals and fuels. CRC Crit Rev Microbiol 10(3):203–228CrossRefGoogle Scholar
  32. Dihazi H, Kessler R, Eschrich K (2001) Phosphorylation and inactivation of yeast 6-phosphofructo-2-kinase contribute to the regulation of glycolysis under hypotonic stress. Biochem 40(48):14669–14678CrossRefGoogle Scholar
  33. Diniz RH, Silveira WB, Fietto LG, Passos FM (2012) The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie Van Leeuwenhoek 101(3):541–550PubMedCrossRefGoogle Scholar
  34. Domingues L, Dantas MM, Lima N, Teixeira JA (1999) Continuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain. Biotechnol Bioeng 64(7):692PubMedCrossRefGoogle Scholar
  35. Doyle A (2005) Another step in biofuel supply. Ir Farmers J Interact 2005:12–16Google Scholar
  36. Fang X, Shen Y, Zhao J, Bao X, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101(13):4814–4819PubMedCrossRefGoogle Scholar
  37. FAO W (2012) IFAD. The state of food insecurity in the world, 65Google Scholar
  38. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79(3):339–354PubMedCrossRefGoogle Scholar
  39. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628Google Scholar
  40. García-Martínez T, Bellincontro A, Peinado RA, Mauricio JC, Mencarelli F, Moreno JJ (2011) Discrimination of sweet wines partially fermented by two osmo-ethanol-tolerant yeasts by gas chromatographic analysis and electronic nose. Food Chem 127(3):1391–1396PubMedCrossRefGoogle Scholar
  41. Ghaly AE, Kamal MA (2004) Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res 38(3):631–644PubMedCrossRefGoogle Scholar
  42. Gibson A (2006) Ethanol from whey. Sustainable energy conference, 26–27 July, Palmerston North, New ZealandGoogle Scholar
  43. Guimarães PM, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28(3):375–384PubMedCrossRefGoogle Scholar
  44. Hacking AJ, Taylor IWF, Hanas CM (1984) Selection of yeast able to produce ethanol from glucose at 40 C. Appl Microbiol Biotechnol 19(5):361–363CrossRefGoogle Scholar
  45. Hamilton R (1998) The manufacture of ethanol from whey. Chemical processes in New Zealand: New Zealand Institute of ChemistryGoogle Scholar
  46. Hernandez-Saavedra NY, Ochoa JL, Vazquez-Dulhalt R (1995) Osmotic adjustment in marine yeast. J Plankton Res 17(1):59–69CrossRefGoogle Scholar
  47. Hughes DB, Tudroszen NJ, Moye CJ (1984) The effect of temperature on the kinetics of ethanol production by a thermotolerant strain of kluveromyces marxianus. Biotechnol Lett 6(1):1–6CrossRefGoogle Scholar
  48. Johnson FX, Rosillo-Calle F (2007) Biomass, livelihoods and international trade. Stockholm Environment Institute, StockholmGoogle Scholar
  49. Kang HW, Kim Y, Kim SW, Choi GW (2012) Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612. Bioprocess Biosyst Eng 35(1-2):115–122PubMedCrossRefGoogle Scholar
  50. Kida K, Kume K, Morimura S, Sonoda Y (1992) Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion. J Ferment Bioeng 74(3):169–173CrossRefGoogle Scholar
  51. Kitagawa T, Tokuhiro K, Sugiyama H, Kohda K, Isono N, Hisamatsu M, … Imaeda T (2010) Construction of a β-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis. Appl Microbiol Biotechnol 87(5): 1841–1853Google Scholar
  52. Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975PubMedCrossRefGoogle Scholar
  53. Kosikowski FV (1979) Whey utilization and whey products1. J Dairy Sci 62(7):1149–1160CrossRefGoogle Scholar
  54. Kourkoutas Y, Dimitropoulou S, Kanellaki M, Marchant R, Nigam P, Banat IM, Koutinas AA (2002) High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresour Technol 82(2):177–181PubMedCrossRefGoogle Scholar
  55. Krouwel PG, Braber L (1979) Ethanol production by yeast at supraoptimal temperatures. Biotechnol Lett 1(10):403–408CrossRefGoogle Scholar
  56. Kurtzman CP, Fell JW (eds) (1998) The yeasts, a taxonomic study. Elsevier, AmsterdamGoogle Scholar
  57. Lachance MA (1998) Kluyveromyces van der Walt emends. In: Van der Walt (ed) The Yeasts, 4th edn, pp 227–247Google Scholar
  58. Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24(1):17–26CrossRefGoogle Scholar
  59. Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100(4):507–519PubMedCrossRefGoogle Scholar
  60. Lee C, Yamakawa T, Kodama T (1993) Rapid growth of a thermotolerant yeast on palm oil. World J Microbiol Biotechnol 9(2):187–190PubMedCrossRefGoogle Scholar
  61. Li SZ, Chan-Halbrendt C (2009) Ethanol production in (the) People’s Republic of China: potential and technologies. Appl Energy 86:S162–S169CrossRefGoogle Scholar
  62. Licht FO (2003) World ethanol markets: the outlook to 2012: an FO Licht special study. FO LichtGoogle Scholar
  63. Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98(17):3367–3374PubMedCrossRefGoogle Scholar
  64. Ling KC (2008) Whey to ethanol. Is there a biofuel role for dairy cooperatives? Rural Cooperatives, Washington, DCGoogle Scholar
  65. Löser C, Urit T, Nehl F, Bley T (2011) Screening of Kluyveromyces strains for the production of ethyl acetate: design and evaluation of a cultivation system. Eng Life Sci 11(4):369–381CrossRefGoogle Scholar
  66. Lyons TP, Cunningham JD (1980) Fuel alcohol from whey. Am Dairy Rev 42(11):42A–42EGoogle Scholar
  67. Marullo P, Mansour C, Dufour M, Albertin W, Sicard D, Bely M, Dubourdieu D (2009) Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Res 9(8):1148–1160PubMedCrossRefGoogle Scholar
  68. Marwaha SS, Kennedy JF (1988) Whey – pollution problem and potential utilization. Int J Food Sci Technol 23(4):323–336CrossRefGoogle Scholar
  69. Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47(3):195–203CrossRefGoogle Scholar
  70. Menon V, Prakash G, Rao M (2010) Enzymatic hydrolysis and ethanol production using xyloglucanase and Debaromyces hansenii from tamarind kernel powder: galactoxyloglucan predominant hemicellulose. J Biotechnol 148(4):233–239PubMedCrossRefGoogle Scholar
  71. Michel GP, Starka JIRI (1986) Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J Bacteriol 165(3):1040–1042PubMedPubMedCentralCrossRefGoogle Scholar
  72. Morimura S, Ling ZY, Kida K (1997) Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance. J Ferment Bioeng 83(3):271–274CrossRefGoogle Scholar
  73. Morris D (1993) Ethanol: a 150 year struggle toward a renewable future. Institute for Local Self-Reliance, Washington, DCGoogle Scholar
  74. Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G et al (2014) Phenotypic evaluation of natural and industrial saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 98(22):9483–9498PubMedCrossRefGoogle Scholar
  75. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14(2):578–597CrossRefGoogle Scholar
  76. Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S et al (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74(24):7514–7521PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nwachukwu IN, Ibekwe VI, Nwabueze RN, Anyanwu BN (2006) Characterisation of palm wine yeast isolates for industrial utilisation. Afr J Biotechnol 5(19):1725–1728Google Scholar
  78. Oberoi HS, Babbar N, Sandhu SK, Dhaliwal SS, Kaur U, Chadha BS, Bhargav VK (2012) Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biotechnol 39(4):557–566PubMedCrossRefGoogle Scholar
  79. Oda Y, Nakamura K (2009) Production of ethanol from the mixture of beet molasses and cheese whey by a 2-deoxyglucose-resistant mutant of Kluyveromyces marxianus. FEMS Yeast Res 9(5):742–748PubMedCrossRefGoogle Scholar
  80. Ohta K, Wijeyaratne SC, Hayashida S (1988) Temperature-sensitive mutants of a thermotolerant yeast, Hansenula polymorpha. J Ferment Technol 66(4):455–459CrossRefGoogle Scholar
  81. Orellana C, Neto RB (2006) Brazil and Japan give fuel to ethanol market. Nat Biotechnol 24:232PubMedCrossRefGoogle Scholar
  82. Ortiz-Muñiz B, Carvajal-Zarrabal O, Torrestiana-Sanchez B, Aguilar-Uscanga MG (2010) Kinetic study on ethanol production using saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. J Chem Technol Biotechnol 85(10):1361–1367CrossRefGoogle Scholar
  83. Osho A (2005) Ethanol and sugar tolerance of wine yeasts isolated from fermenting cashew apple juice. Afr J Biotechnol 4(7):660–662CrossRefGoogle Scholar
  84. Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102(22):10618–10624PubMedCrossRefGoogle Scholar
  85. Pesta G, Meyer-Pittroff R, Russ W (2007) Utilization of whey. Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 193–207CrossRefGoogle Scholar
  86. Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29(2):397–407PubMedCrossRefGoogle Scholar
  87. Polat Z (2009) Integrated approach to whey utilization through natural zeolite adsorption/desorption and fermentation. Graduate School of Engineering, IzmirGoogle Scholar
  88. Prasetyo J, Naruse K, Kato T, Boonchird C, Harashima S, Park EY (2011) Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and, thermotolerant Saccharomyces cerevisiae TJ14. Biotechnol Biofuels 4(1):35PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sust Energ Rev 4(2):135–156CrossRefGoogle Scholar
  90. Rana S, Tiwari R, Arora A, Singh S, Kaushik R, Saxena AK, Nain L (2013) Prospecting Parthenium sp. pretreated with Trametes hirsuta, as a potential bioethanol feedstock. Biocatal Agric Biotechnol 2(2):152–158Google Scholar
  91. Renewable Fuels Association (2009) Ethanol industry statistics. Online: http://www.ethanolrfa.org/industry/statistics
  92. RFA-Renewable Fuels Association (2010) The industry-statisticsGoogle Scholar
  93. Rogosa M, Browne HH, Whittier EO (1947) Ethyl alcohol from whey. J Dairy Sci 30(4):263–269CrossRefGoogle Scholar
  94. Ruyters S, Mukherjee V, Verstrepen KJ, Thevelein JM, Willems KA, Lievens B (2015) Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol 42(1):39–48PubMedCrossRefGoogle Scholar
  95. Sansonetti S, Curcio S, Calabrò V, Iorio G (2009) Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass Bioenergy 33(12):1687–1169CrossRefGoogle Scholar
  96. Schirmer-Michel ÂC, Flôres SH, Hertz PF, Matos GS, Ayub MAZ (2008) Production of ethanol from soybean hull hydrolysate by osmotolerant candida guilliermondii NRRL Y-2075. Bioresour Technol 99(8):2898–2904PubMedCrossRefGoogle Scholar
  97. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147PubMedCrossRefGoogle Scholar
  98. Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeates by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzym Microb Technol 36(7):930–936CrossRefGoogle Scholar
  99. Siso MG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57(1):1–11CrossRefGoogle Scholar
  100. Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18(7):695–704CrossRefGoogle Scholar
  101. Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy 31(6):416–425CrossRefGoogle Scholar
  102. Souza RR (2006) Oportunidades e desafios para o mercado mundial de álcool automotivo. Universidad Federal de Río de Janeiro, Río de JaneiroGoogle Scholar
  103. Sridhar M, Sree NK, Rao LV (2002) Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS 1 and VS 3 strains. Bioresour Technol 83(3):199–202PubMedCrossRefGoogle Scholar
  104. Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010) Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37(2):139–149PubMedCrossRefGoogle Scholar
  105. Stewart GG (2001) Yeast management–the balance between fermentation efficiency and beer quality. Tech Q:39–46Google Scholar
  106. Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. Microbiology 136(8):1469–1474Google Scholar
  107. Szczodrak J, Targoński Z (1988) Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnol Bioeng 31(4):300–303PubMedCrossRefGoogle Scholar
  108. Tamás MJ, Hohmann S (2003) The osmotic stress response of saccharomyces cerevisiae. In: Hohmann S, Mager WH (eds) Yeast stress responses. Chapman & Hall, New York, pp 121–200CrossRefGoogle Scholar
  109. Tofalo R, Chaves-López C, Di Fabio F, Schirone M, Felis GE, Torriani S et al (2009) Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must. Int J Food Microbiol 130(3):179–187PubMedCrossRefGoogle Scholar
  110. Thammasittirong SNR, Thirasaktana T, Thammasittirong A, Srisodsuk M (2013) Improvement of ethanol production by ethanol-tolerant saccharomyces cerevisiae UVNR56. SpringerPlus 2(1):583PubMedPubMedCentralCrossRefGoogle Scholar
  111. Thiele JH (2005) Estimate of the energy potential for fuel ethanol from putrescible waste in New Zealand. Waste Solutions Ltd., DunedinGoogle Scholar
  112. Tsegaye Z (2016) Isolation, identification and characterization of ethanol tolerant yeast species from fruits for production of bio-ethanol. Int J Mod Chem Appl Sci 3:437–443Google Scholar
  113. Urit T, Löser C, Wunderlich M, Bley T (2011) Formation of ethyl acetate by Kluyveromyces marxianus on whey: studies of the ester stripping. Bioprocess Biosyst Eng 34(5):547–559PubMedCrossRefGoogle Scholar
  114. Van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek 63(3–4):343–352PubMedCrossRefGoogle Scholar
  115. Van Uden N (1984) Temperature pro®les of yeasts. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 25. Academic Press, London, pp 195–248Google Scholar
  116. Van Urk H, Voll WL, Scheffers WA, Van Dijken JP (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 56(1):281–287PubMedPubMedCentralGoogle Scholar
  117. Vienne P, Von Stockar U (1985) Metabolic, physiological and kinetic aspects of the alcoholic fermentation of whey permeate by Kluyveromyces fragilis NRRL 665 and Kluyveromyces lactis NCYC 571. Enzym Microb Technol 7(6):287–294CrossRefGoogle Scholar
  118. Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11(4–5):234–242PubMedCrossRefGoogle Scholar
  119. Wang CJ, Jayanata Y, Bajpai RK (1987) Effect of multiple substrates in ethanol fermentations from cheese whey. J Ferment Technol 65:249–253CrossRefGoogle Scholar
  120. Walter A, Rosillo-Calle F, Dolzan P, Piacente E, da Cunha KB (2008) Perspectives on fuel ethanol consumption and trade. Biomass Bioenergy 32(8):730–748CrossRefGoogle Scholar
  121. Wardrop FR, Liti G, Cardinali G, Walker GM (2004) Physiological responses of Crabtree positive and Crabtree negative yeasts to glucose upshifts in a chemostat. Ann Microbiol 54(1):103–114Google Scholar
  122. Watanabe T, Srichuwong S, Arakane M, Tamiya S, Yoshinaga M, Watanabe I, Yamamoto M, Ando A, Tokuyasu K, Nakamura T (2010) Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Bioresour Technol 101(24):9710–9714PubMedCrossRefGoogle Scholar
  123. Webb BH, Whittier EO (1948) The utilization of whey: a review. J Dairy Sci 31(2):139–164CrossRefGoogle Scholar
  124. Wegmann K (1986) Osmoregulation in eukaryotic algae. FEMS Microbiol Lett 39(1–2):37–43CrossRefGoogle Scholar
  125. Whittier EO (1944) Lactose and its utilization: a review. J Dairy Sci 27(7):505–537CrossRefGoogle Scholar
  126. Wu CZ, Yin XL, Yuan ZH, Zhou ZQ, Zhuang XS (2010) The development of bioenergy technology in China. Energy 35(11):4445–4450CrossRefGoogle Scholar
  127. Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of saccharomyces cerevisiae and pichia stipitis. J Chem Technol Biotechnol 102(11):6473–6478Google Scholar
  128. Yamaoka C, Kurita O, Kubo T (2014) Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol Res 169(12):907–914PubMedCrossRefGoogle Scholar
  129. Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381–388PubMedCrossRefGoogle Scholar
  130. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222PubMedCrossRefGoogle Scholar
  131. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646PubMedCrossRefGoogle Scholar
  132. Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144(1):23–30PubMedCrossRefGoogle Scholar
  133. Zuzuarregui A (2004) Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie Van Leeuwenhoek 85(4):271–280Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Deepansh Sharma
    • 1
  • Mehak Manzoor
    • 1
  • Parul Yadav
    • 1
  • Jagdip Singh Sohal
    • 1
  • Gajender Kumar Aseri
    • 1
  • Neeraj Khare
    • 1
  1. 1.Amity Institute of Microbial TechnologyAmity UniversityJaipurIndia

Personalised recommendations