Fungal Community in Mitigating Impacts of Drought in Plants

  • Richa Raghuwanshi


Drought is a serious and common threat to plant survival worldwide and is getting intensified due to global warming and decreasing water levels thereby possessing challenges on food security. The responses of plants to changing environment are complex. All adaption and acclimatization strategies are at physiological cost at the organism level which can affect ecosystem functioning at large. Mycorrhizae and endophytes are representative symbiotic association of the plants and fungi and are capable of modulating the physiological response of plants to water stress and overcome yield barrier. Water and nutrients available to plant are determined by the rhizospheric water potential which can be manifested to some extent by the AMF. The fungal community forming symbiosis with plants may exert their effect through phytohormones production, solubilization of nutrients, and induction of pathogen resistance or increasing abiotic stress tolerance through increased antioxidant levels in plants. While research supports the fungal endophytes and mycorrhizae as an ecofriendly alternative to combat drought stress, a better perceptive of physiological effects of these microbes to stress can develop a stronger and resilient agroecosystem.


Endophytes Mycorrhizae Drought stress 


  1. Al-Karaki G, Mc Michael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269CrossRefGoogle Scholar
  2. Allen MF, Boosalis MG (1983) Effect of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76CrossRefGoogle Scholar
  3. Alquisira CM, Rojas MG, Márquez HG, Sepúlveda TV (2017) Improved growth and control of oxidative stress in plants of Festuca arundinacea exposed to hydrocarbons by the endophytic fungus Lewia sp. Plant Soil 411:347–358CrossRefGoogle Scholar
  4. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biot 90:1829–1845CrossRefGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  6. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  7. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  8. Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal nonmycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770CrossRefPubMedPubMedCentralGoogle Scholar
  9. Augé RM, Toler HD, Moore JL, Cho K, Saxton AM (2007) Comparing contributions of soil versus root colonization to variations in stomatal behaviour and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. J Plant Physiol 164:1289–1299CrossRefPubMedGoogle Scholar
  10. Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A et al (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301CrossRefGoogle Scholar
  11. Becerra-Castro C, Prieto-Fernández Á, Kidd P, Weyens N, Rodríguez-Garrido B, Touceda-González M, Acea MJ, Vangronsveld J (2013) Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362:247–260CrossRefGoogle Scholar
  12. Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal Ecol 4:110–114CrossRefGoogle Scholar
  13. Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis. Field Crop Res 108:14–31CrossRefGoogle Scholar
  14. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249Google Scholar
  15. Card SD, Johnson LJ, Teasdale S et al (2016) Deciphering microbial behaviour—the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92.
  16. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84CrossRefGoogle Scholar
  17. Chethan Kumar KV, Chandrashekar KR, Lakshmipathy R (2008) Variation in arbuscular mycorrhizal fungi and phosphatase activity associated with Sida cordifolia in Karnataka. World J Agric Sci 4:770–774Google Scholar
  18. Cruz-Hernández A, Tomasini-Campocosio A, Pérez-Flores LJ, Fernández-Perrino FJ, Gutiérrez-Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362:261–270CrossRefGoogle Scholar
  19. Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96CrossRefGoogle Scholar
  20. Egamberdieva D, Kamilova F, Validov S et al (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9PubMedGoogle Scholar
  21. Fan QJ, Liu JH (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542CrossRefGoogle Scholar
  22. Francis R, Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot 73:1301–1309CrossRefGoogle Scholar
  23. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464CrossRefPubMedPubMedCentralGoogle Scholar
  24. Friesen ML (2013) Microbially mediated plant functional traits. In: Molecular microbial ecology of the rhizosphere, vol 1. Wiley, Hoboken, pp 87–102CrossRefGoogle Scholar
  25. Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci U S A 101:10107–10112CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530CrossRefPubMedGoogle Scholar
  27. Graham JH, Eissenstat DM (1998) Field demonstration of carbon cost of citrus mycorrhizas. New Phytol 140:103–110CrossRefGoogle Scholar
  28. Griffiths H, Parry MAJ (2002) Plants response to water stress. Ann Bot 89:801–802CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hallmann J, Quadt-Hallmann A, Mahaffee WF et al (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  30. Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefPubMedPubMedCentralGoogle Scholar
  31. Herrera-Carillo Z, Torres MS, Singh AP, Vorsa N, Gianfagna T, Meyer W, White JF Jr (2009) Phenolic, flavonoid and antioxidant profiling for cool-season grasses with and without endophyte. In: Proceedings of the 18th annual Rutgers Turfgrass symposium, 12 January 2009, Rutgers University, New Brunswick, p 43Google Scholar
  32. Hodge AT, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273CrossRefGoogle Scholar
  33. Hsiao TC, Acevedo TC (1974) Plant responses to water deficits, water-use efficiency, and drought resistance. Agric Meteorol 14:59–84CrossRefGoogle Scholar
  34. Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61(1):14–30CrossRefGoogle Scholar
  35. Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245CrossRefPubMedGoogle Scholar
  36. Jennings DD, Ehrenshaft M, Pharr DM, Williamson JD (1998) Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc Natl Acad Sci U S A 95:15129–15133CrossRefPubMedPubMedCentralGoogle Scholar
  37. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  38. Johnson JM, Alex T, Oelmuller R (2014) Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52:103–122Google Scholar
  39. Khalmuratova I, Kim H, Nam Y, Oh Y, Jeong M, Choi H, You Y, Lee I, Shin J, Yoon H, You YH (2015) Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the coast of Korea. Microbiology:43–44Google Scholar
  40. Koide RT, Mosse B (2004) A history of research on Arbuscular mycorrhiza. Mycorrhiza 14:145–163CrossRefPubMedGoogle Scholar
  41. M’arquez LM, Redman RS, Rodriguez RJ et al (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515CrossRefGoogle Scholar
  42. Malinowski MP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassl Sci 52:1–14CrossRefGoogle Scholar
  43. Malinowski M, Beleski DP, Lewis GC (2005) Abiotic stresses in endophytic grasses. In: Robert C, West CP, Spiers DE (eds) Neotyphodiumin cool season grasses. Blackwell, Ames, pp 187–199CrossRefGoogle Scholar
  44. Manoharachary C (2001) Arbuscular mycorrhizal fungi and their SEM aspects. In: Reddy SM, Ram Reddy S, Singarachary MA, Girisham S (eds) Bioinoculants for sustainable agriculture and forestry. Proceeding of national symposium, India, Scientific Publishers, pp 37–42Google Scholar
  45. Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4(1):81–95CrossRefPubMedGoogle Scholar
  46. Mercado-Blanco J (2015) Life of microbes inside the plant. In: Lugtenberg B (ed) Principles of plant-microbe interactions-microbes for sustainable agriculture. Springer, Dordrecht, pp 25–32Google Scholar
  47. Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584CrossRefGoogle Scholar
  48. Murphy BR, Doohan FM, Hodkinson TR (2015) Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis 65:1–7CrossRefGoogle Scholar
  49. Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52(2):195–204CrossRefPubMedGoogle Scholar
  50. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164CrossRefPubMedGoogle Scholar
  51. Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750CrossRefPubMedGoogle Scholar
  52. Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143CrossRefGoogle Scholar
  53. Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80CrossRefGoogle Scholar
  54. Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716CrossRefGoogle Scholar
  55. Redman RS, Rossinck MR, Maher S, Andrews QC, Schneider WL et al (2002a) Field performance of cucurbit and tomato plants infected with a nonpathogenic mutant of Colletotrichum magna (teleomorph: Glomerella magna; Jenkins and Winstead). Symbiosis 32:55–70Google Scholar
  56. Redman RS, Sheehan KB, Stout RG et al (2002b) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581CrossRefPubMedGoogle Scholar
  57. Redman RS, Kim YO, Woodward CJDA et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One e14823:6Google Scholar
  58. Richardson MD, Chapman GW, Hovel CS, Bacon CW (1992) Sugar alcohols in endophyte-infected tall fescue. Crop Sci 32:1060–1061CrossRefGoogle Scholar
  59. Rodriguez RJ, Henson J, Van Volkenburgh E et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416CrossRefPubMedGoogle Scholar
  60. Rodriguez RJ, White JF, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefPubMedGoogle Scholar
  61. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, New perspectives for molecular studies. Mycorrhiza 13:309–317CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ruiz-Sánchez M, Aroca R, Muñoz Y, Armada E, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869CrossRefPubMedGoogle Scholar
  63. Schardl CL, Leuchtmann A, Spiering M (2004) Symbiosis of grasses with seed borne fungal endophytes. Annu Rev Plant Biol 55:315–340CrossRefPubMedGoogle Scholar
  64. Schulz BJE (2006) Mutualistic interactions with fungal root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes, vol 9. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  65. Schulz B, Rommert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte–host interaction: a balanced antagonism? Mycol Res 10:1275–1283CrossRefGoogle Scholar
  66. Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  67. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzyme in growing rice seedling. Plant Growth Regul 46:209–221CrossRefGoogle Scholar
  68. Shrivastava S, Verma A (2014) From Piriformospora indica to rootonic: a review. Afr J Microbial Res 8(32):2984–2992CrossRefGoogle Scholar
  69. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  70. Simpson D, Daft MJ (1990) Interactions between water-stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121:179–186CrossRefGoogle Scholar
  71. Sinha S, Raghuwanshi R (2016) Synergistic effects of Arbuscular Mycorrhizal Fungi and mycorrhizal helper bacteria on physiological mechanism to tolerate drought in Eclipta prostrata (L.) L. J Pure Appl Microbiol 10(2):1117–1129Google Scholar
  72. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New YorkGoogle Scholar
  73. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502CrossRefPubMedPubMedCentralGoogle Scholar
  74. Studer C, Hu Y, Schmidhalter U (2007) Evaluation of the differential osmotic adjustments between roots and leaves of maize seedlings with single or combined NPK-nutrient supply. Funct Plant Biol 34:228–236CrossRefGoogle Scholar
  75. Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22:247–258CrossRefPubMedGoogle Scholar
  76. Sylvia DM, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmental stress. In: Beihlenfalvay GJ and Linderman RG (eds) Mycorrhizae in sustainable agriculture, Am Soc Agron special publication 54, American Society of Agronomy, Madison, 101–124Google Scholar
  77. Tanaka A, Christensen MJ, Takemoto D et al (2006) Reactive oxygen species play a role in regulating a fungus-perennial rye grass mutualistic interaction. Plant Cell 18:1052–1066CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tian CJ, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187CrossRefPubMedPubMedCentralGoogle Scholar
  79. Torres MS, Singh AP, Shah S, Herrera-Carrillo Z, Gianfagna T, White JF Jr, Vorsa N (2009) LC–MS–MS identification and quantification of phenolics in symbiotic tall fescue. In: Proceedings of the 18th annual Rutgers Turfgrass symposium, 12 January 2009, Rutgers University, New Brunswick, p 54Google Scholar
  80. Treseder KK, Turner K (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266CrossRefGoogle Scholar
  81. Vega FE, Simpkins A, Aime MC et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai, Mexico and Puerto Rico. Fungal Ecol 3:122–138CrossRefGoogle Scholar
  82. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14CrossRefPubMedGoogle Scholar
  83. Wu QS, Zou YN, He XH (2011) Difference of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Sci Hort 129:294–298CrossRefGoogle Scholar
  84. Yuan ZL, Zhang C, Lin F (2009) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:9112–9119Google Scholar
  85. Zhu JK (2001a) Plant salt tolerance. Trends Plant Sci 6:66–71CrossRefGoogle Scholar
  86. Zhu JK (2001b) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406CrossRefPubMedGoogle Scholar
  87. Zhu X, Song F, Liu S (2011) Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J Food Agric Environ 9:583–587Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Richa Raghuwanshi
    • 1
  1. 1.Department of BotanyMMV, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations