Advertisement

Hot Springs of India: Occurrence and Microbial Diversity

  • Manik Prabhu Narsing Rao
  • Lan Liu
  • Jian-Yu Jiao
  • Min Xiao
  • Wen-Jun LiEmail author
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 8)

Abstract

Hot springs indicate where hot water is emitted from the Earth; they are situated in many parts of the world, and most of them are known for their medical importance. Extensive research has been conducted to understand their chemical composition and microbial diversity. This chapter focuses on some important Indian hot springs, their locations, components, and importance. Much emphasis is placed on understanding their microbial diversity, including culture dependent, as well as independent methods. This chapter also sheds light on various Indian hot spring’s uniqueness, novel strains that have been reported, and information regarding the genome sequence for strains that have been isolated from Indian hot springs. The bioactive molecules, such as enzymes and antibiotics obtained from hot springs, are also listed here.

Keywords

Indian hot springs Culture-dependent study Culture-independent study Novel strains 

Notes

Acknowledgments

This work was supported by Science and Technology Infrastructure Project (No. 2015FY110100) and Key Project of International Cooperation of Ministry of Science & Technology (MOST) (No. 2013DFA31980), Natural Science Foundation of China (Nos. 31470139 and 31600103), and China Postdoctoral Science Foundation No. 2017M612796. W-J Li was also supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014).

References

  1. Aditiawati P, Yohandini H, Madayanti F, Akhmaloka (2009) Microbial diversity of acidic hot spring (Kawah Hujan B) in geothermal field of Kamojang area, West Java-Indonesia. Open Microbiol J 3:58–66CrossRefPubMedPubMedCentralGoogle Scholar
  2. Badhai J, Ghosh TS, Das SK (2015) Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India. Front Microbiol 6:1166.  https://doi.org/10.3389/fmicb.2015.01166 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Badhai J, Narayan KD, Whitman WB, Das SK (2016a) Draft genome sequence of Gulbenkiania indica strain HT27T (DSM 17901T) isolated from a sulfur spring in India. Genome Announc 4:e00830–e00816.  https://doi.org/10.1128/genomeA.00830-16 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Badhai J, Whitman WB, Das SK (2016b) Draft genome sequence of Chelatococcus sambhunathii strain HT4T (DSM 18167T) isolated from a hot spring in India. Genome Announc 4(4):e00825–e00816.  https://doi.org/10.1128/genomeA.00825-16 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bandyopadhyay S, Schumann P, Das SK (2013) Pannonibacter indica sp. nov., a highly arsenatetolerant bacterium isolated from a hot spring in India. Arch Microbiol 195(1):1–8CrossRefPubMedGoogle Scholar
  6. Bandyopadhyay S, Whitman WB, Das SK (2017) Draft genome sequence of Pannonibacter indicus strain HT23T (DSM 23407T), a highly arsenate tolerant bacterium isolated from a hot spring in India. Genome Announc 5(18):e00283–e00217.  https://doi.org/10.1128/genomeA.00283-17 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barbier P, Houel A, Loux V, Poulain J, Bernardet JF, Touchon M, Duchaud E (2012) Complete genome sequence of Flavobacterium indicum GPSTA100-9T, isolated from warm spring water. J Bacteriol 194:3024–3025CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone national Park hot spring environment. Proc Natl Acad Sci U S A 91(5):1609–1613CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bhatia S, Batra N, Pathak A, Green SJ, Joshi A, Chsauhan A (2015) Metagenomic evaluation of bacterial and archaeal diversity in the geothermal hot springs of Manikaran, India. Genome Announc 3(1):e01544–e01514.  https://doi.org/10.1128/genomeA.01544-14 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bisht SS, Das NN, Tripathy NK (2011) Indian hot- water springs: a bird’s eye view. JoEECC 1(1):1–15Google Scholar
  11. Brock TD (1997) The value of basic research: discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146:1207–1210PubMedPubMedCentralGoogle Scholar
  12. Chandrasekharam D, Alam MA, Minissale A (2005) Thermal discharges at Manikaran, Himachal Pradesh, India. In: Proceedings World Geothermal Congress Antalya, Turkey 24–29 April 2005Google Scholar
  13. Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557PubMedPubMedCentralGoogle Scholar
  14. Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta suppl:59–69Google Scholar
  15. Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13:447–459CrossRefPubMedPubMedCentralGoogle Scholar
  16. Craig J, Absar A, Bhat G, Cadel G, Hafiz M, Hakhoo N, Kashkari R, Moore J, Ricchiuto TE, Thurow J, Thusu B (2013) Hot springs and the geothermal energy potential of Jammu & Kashmir State, N.W. Himalaya, India. Earth-Sci Rev 126:156–177CrossRefGoogle Scholar
  17. Deep K, Poddar A, Das SK (2013) Anoxybacillus suryakundensis sp. nov, a moderately thermophilic, alkalitolerant bacterium isolated from hot spring at Jharkhand, India. PLoS One 8(12):e85493.  https://doi.org/10.1371/journal.pone.0085493 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Deep K, Poddar A, Whitman WB, Das SK (2016) Draft genome sequence of Anoxybacillus suryakundensis strain JS1T (DSM27374T) isolated from a hot spring in Jharkhand, India. Genome Announc 4(4):e00824–e00816.  https://doi.org/10.1128/genomeA.00824-16 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Drouet F (1938) Myxophyceae of the Yale North India expedition, collected by G. E. Hutchinson. Trans Am Microsc Soc 57(2):127–131CrossRefGoogle Scholar
  20. Dwivedi V, Sangwan N, Nigam A, Garg N, Niharika N, Khurana P, Khurana JP, Lal R (2012) Draft genome sequence of Thermus sp. strain RL, isolated from a hot water spring located atop the Himalayan ranges at Manikaran, India. J Bacteriol 194(13):3534CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dwivedi V, Kumari K, Gupta SK, Kumari R, Tripathi C, Lata P, Niharika N, Singh AK, Kumar R, Nigam A, Garg N, Lal R (2015) Thermus parvatiensis RLT sp. nov., isolated from a hot water spring, located a top the Himalayan ranges at Manikaran, India. Indian J Microbiol 55:357–365CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ghelani A, Patel R, Mangrola A, Dudhagara P (2015) Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam hot springs, India. Genom Data 4:54–56CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gonzalves E (1947) The algal flora of the hot springs of Vajreswari near Bombay. Jour Univ Bombay 16:22–27Google Scholar
  24. Gurumurthy DM, Neelagund SE (2010) Geobacillus sp. Iso 5, a novel amylase-producing thermophile from thermal springs in Konkan region of Southern India. J Earth Sci 21(1):319–322CrossRefGoogle Scholar
  25. Hedlund BP, Cole JK, Williams AJ, Hou W, Zhou E, Li WJ, Dong H (2012) A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. Geo Sci Front 3(3):273–288CrossRefGoogle Scholar
  26. Huang Q, Jiang H, Briggs BR, Wang S, Hou W, Li G, Wu G, Solis R, Arcilla CA, Abrajano T, Dong H (2013) Archaeal and bacterial diversity in acidic to circum neutral hot springs in the Philippines. FEMS Microbiol Ecol 85:452–464CrossRefPubMedGoogle Scholar
  27. Jain P, Reza HM, Pa S (2014) Molecular phylogenetic analysis of bacterial community and characterization of Cr(VI) reducers from the sediments of Tantloi hot spring, India. Aquat Biosyst 10:7.  https://doi.org/10.1186/2046-9063-10-7 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jana BB (1973) The thermal springs of Bakreswar, India physico-chemical conditions, flora and fauna. Hydrobiologia 41:291–307CrossRefGoogle Scholar
  29. Jyoti V, Narayan KD, Das SK (2010) Gulbenkiania indica sp. nov., isolated from a sulfur spring. Int J Syst Evol Microbiol 60:1052–1055CrossRefPubMedGoogle Scholar
  30. Kumar B, Trivedi P, Mishra AK, Pandey A, Palni LM (2004) Microbial diversity of soil from two hot springs in Uttaranchal Himalaya. Microbiol Res 159:141–146CrossRefPubMedGoogle Scholar
  31. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64:741–751CrossRefGoogle Scholar
  32. Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liang J, Kang D, Wang Y, Yu Y, Fan J, Takashi E (2015) Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats. PLoS One 10(2):e0117106.  https://doi.org/10.1371/journal.pone.0117106 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mahato NK, Tripathi C, Verma H, Singh N, Lal R (2014) Draft genome sequence of Deinococcus sp. strain RL isolated from sediments of a hot water spring. Genome Announc 2(4):e00703–e00714.  https://doi.org/10.1128/genomeA.00703-14 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mangrola A, Dudhagara P, Koringa P, Joshi CG, Parmar M, Patel R (2015a) Deciphering the microbiota of Tuwa hot spring, India using shotgun metagenomic sequencing approach. Genom Data 4:153–155CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mangrola AV, Dudhagara P, Koringa P, Joshi CG, Patel RK (2015b) Shotgun metagenomic sequencing based microbial diversity assessment of Lasundra hot spring, India. Genom Data 4:73–75CrossRefPubMedPubMedCentralGoogle Scholar
  37. Marsh CL, Larsen DH (1953) Characterization of some thermophilic bacteria from the hot springs of Yellowstone National Park. J Bacteriol 65:193–197PubMedPubMedCentralGoogle Scholar
  38. Masaki Y, Tsutsumi K, Hirano S, Okibe N (2016) Microbial community profiling of the Chinoike Jigoku (“Blood Pond Hell”) hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1. Res Microbiol 167:595–603CrossRefPubMedGoogle Scholar
  39. Mehetre GT, Paranjpe AS, Dastager SG, Dharne MS (2016) Complete metagenome sequencing based bacterial diversity and functional insights from basaltic hot spring of Unkeshwar, Maharashtra, India. Genom Data 7:140–143CrossRefPubMedGoogle Scholar
  40. Mehta D, Satyanarayana T (2013) Diversity of hot environments and thermophilic microbes. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 3–60CrossRefGoogle Scholar
  41. Merkel AY, Pimenov NV, Rusanov II, Slobodkin AI, Slobodkina GB, Tarnovetckii IY, Frolov EN, Dubin AV, Perevalova AA, Bonch-Osmolovskaya EA (2017) Microbial diversity and autotrophic activity in Kamchatka hot springs. Extremophiles 21(2):307–317CrossRefPubMedGoogle Scholar
  42. Miquel P (1888) Monographie d’un bacille vivant au-dela de 70 °C. Ann Micrographic 1:4Google Scholar
  43. Mittal P, Saxena R, Sharma VK (2017) Draft genome sequence of Anoxybacillus mongoliensis strain MB4, a sulfur-utilizing aerobic thermophile isolated from a hot spring in Tattapani, Central India. Genome Announc 5:e01709–e01716.  https://doi.org/10.1128/genomeA.01709-16 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Narayan KD, Pandey SK, Das SK (2010) Characterization of Comamonas thiooxidans sp. nov and the comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Curr Microbiol 61:248–253CrossRefPubMedGoogle Scholar
  45. Narayan KD, Sabat SC, Das SK (2016a) Mechanism of electron transport during thiosulfate oxidation in an obligately mixotrophic bacterium Thiomonas bhubaneswarensis strain S10 (DSM 18181T). Appl Microbiol Biotechnol 101:1239–1252CrossRefPubMedGoogle Scholar
  46. Narayan KD, Badhai J, Whitman WB, Das SK (2016b) Draft genome sequence of Comamonas thiooxydans strain S23T (DSM17888T), a thiosulfate-oxidizing bacterium isolated from a sulfur spring in India. Genome Announc 4(4):e00834–e00816.  https://doi.org/10.1128/genomeA.00834-16 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nishiyama M, Yamamoto S, Kurosawa N (2013) Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular and culture-based approaches. J Microbiol 51(4):413–422CrossRefPubMedGoogle Scholar
  48. Oldham RD (1888) Some notes on the geology of the North-West Himalayas. Rec Geol Surv India 21:149–157Google Scholar
  49. Panda SK, Jyoti V, Bhadra B, Nayak KC, Shivaji S, Rainey FA, Das SK (2009) Thiomonas bhubaneswarensis sp. nov., a novel obligately mixotrophic, moderately thermophilic, thiosulfate oxidizing bacterium. Int J Syst Evol Microbiol 59:2171–2175CrossRefPubMedGoogle Scholar
  50. Panda AK, Bisht SS, Kumar NS, Mandal SD (2015) Investigations on microbial diversity of Jakrem hot spring, Meghalaya, India using cultivation-independent approach. Genom Data 4:156–157CrossRefPubMedPubMedCentralGoogle Scholar
  51. Panday D, Das SK (2010) Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from a hot spring sediment. Int J Syst Evol Microbiol 60:861–865CrossRefPubMedGoogle Scholar
  52. Pandey OP, Negi JG (1995) Geothermal fields of India: a latest update. In: Proceedings of World Geothermal Congress International Geothermal Association, Bochum, Germany, pp 163–171Google Scholar
  53. Pathak AP, Rathod MG (2014) Cultivable bacterial diversity of terrestrial thermal spring of Unkeshwar, India. J Biochem Tech 5:814–818Google Scholar
  54. Pednekar P, Jain R, Mahajan G (2011) Anti-infective potential of hotspring bacteria. J Glob Infect Dis 3:241–245CrossRefPubMedPubMedCentralGoogle Scholar
  55. Piterina AV, Pembroke JT (2010) Preparation and analysis of environmental DNA: optimisation of techniques for phylogenetic analysis of ATAD sludge. In: Mendez-Vilaz A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 1533–1538Google Scholar
  56. Poddar A, Lepcha RT, Das SK (2014) Taxonomic study of the genus Tepidiphilus: transfer of Petrobacter succinatimandens to the genus Tepidiphilus as Tepidiphilus succinatimandens comb. nov., emended description of the genus Tepidiphilus and description of Tepidiphilus thermophilus sp. nov., isolated from a terrestrial hot spring. Int J Syst Evol Microbiol 64:228–235CrossRefPubMedGoogle Scholar
  57. Poddar A, Lepcha RT, Whitman WB, Das SK (2016) Draft genome sequence of Tepidiphilus thermophilus strain JHK30T (JCM 19170T) isolated from a terrestrial hot spring in India. Genome Announc 4(4):e00832–e00816.  https://doi.org/10.1128/genomeA.00832-16 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rakshak K, Ravinder K, Nupur STN, Kumar PA (2013) Caldimonas meghalayensis sp. nov., a novel thermophilic betaproteobacterium isolated from a hot spring of Meghalaya in Northeast India. Antonie Van Leeuwenhoek 104(6):1217–1225CrossRefPubMedGoogle Scholar
  59. Ramanathan A, Chandrasekharam D (1997) Geochemistry of Rajpur and Puttur thermal springs of the West Cost, India. J Geol Soc India 49:559–556Google Scholar
  60. Reigstad LJ, Jorgensen SL, Schleper C (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J 4:346–356CrossRefPubMedGoogle Scholar
  61. Ruckmani A, Kaur I, Schumann P, Klenk HP, Mayilraj S (2011) Calidifontibacter indicus gen. nov., sp. nov., a member of the family Dermacoccaceae isolated from a hot spring, and emended description of the family Dermacoccaceae. Int J Syst Evol Microbiol 61:2419–2424CrossRefPubMedGoogle Scholar
  62. Saha P, Chakrabarti T (2006a) Aeromonas sharmana sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 56:1905–1909CrossRefPubMedGoogle Scholar
  63. Saha P, Chakrabarti T (2006b) Flavobacterium indicum sp. nov., isolated from warm spring water in Assam. India. Int J Syst Evol Microbiol 56:2617–2621CrossRefPubMedGoogle Scholar
  64. Saha P, Chakrabarti T (2006c) Emticicia oligotrophica gen. nov., sp. nov., a new member of the family ‘Flexibacteraceae’, phylum Bacteroidetes. Int J Syst Evol Microbiol 56:991–995CrossRefGoogle Scholar
  65. Saha P, Krishnamurthi S, Mayilraj S, Prasad GS, Bora TC, Chakrabarti T (2005a) Aquimonas voraii gen. nov., sp. nov., a novel gammaproteobacterium isolated from a warm spring of Assam, India. Int J Syst Evol Microbiol 55:1491–1495CrossRefPubMedGoogle Scholar
  66. Saha P, Mondal AK, Mayilraj S, Krishnamurthi S, Bhattacharya A, Chakrabarti T (2005b) Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol 55:2577–2581CrossRefPubMedGoogle Scholar
  67. Saha P, Krishnamurthi S, Bhattacharya A, Sharma R, Chakrabarti T (2010) Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 60:422–428CrossRefPubMedGoogle Scholar
  68. Sahoo RK, Subudhi E, Kumar M (2015) Investigation of bacterial diversity of hot springs of Odisha, India. Genom Data 6:188–190CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sarolkar PB (2005) Geochemical characters of hot springs of West Coast, Maharashtra State, India. In: Proceedings World Geothermal Congress, Antalya, Turkey, 24–29 April 2005Google Scholar
  70. Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK (2017) Metagenomic analysis of hot springs in Central India reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7:2123.  https://doi.org/10.3389/fmicb.2016.02123 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schlagintweit RD (1865) Enumeration of hot springs of India and high Asia. J Asiat Soc Bengal 33:51–73Google Scholar
  72. Sen R, Maiti NK (2014) Genomic and functional diversity of bacteria isolated from hot springs in Odisha, India. Geomicrobiol J 31:541–550CrossRefGoogle Scholar
  73. Sharma SK (2010) Geothermal: a sustainable energy outlook for India. In: Proceedings World Geothermal Congress, Bali, Indonesia, 25–29 April 2010Google Scholar
  74. Sharma N, Vyas G, Pathania S (2013) Culturable diversity of thermophilic microorganisms found in hot springs of northern Himalayas and to explore their potential for production of industrially important enzymes. Sch Acad J Biosci 1:165–178Google Scholar
  75. Sharma A, Hira P, Shakarad M, Lal R (2014) Draft genome sequence of Cellulosimicrobium sp. strain MM, isolated from arsenic-rich microbial mats of a Himalayan hot spring. Genome Announc 2(5):e01020–e01014.  https://doi.org/10.1128/genomeA.01020-14 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sharma A, Kohli P, Singh Y, Schumann P, Lal R (2016) Fictibacillus halophilus sp. nov., from a microbial mat of a hot spring atop the Himalayan range. Int J Syst Evol Microbiol 66:2409–2416CrossRefPubMedGoogle Scholar
  77. Singh A, Subudhi E (2016) Structural insights of microbial community of Deulajhari (India) hot spring using 16s-rRNA based metagenomic sequencing. Genom Data 7:101–102CrossRefPubMedGoogle Scholar
  78. Thomas J, Gonzalves EA (1965a) Thermal algae of Western India. I. Algae of the hot springs at Akloli and Ganeshpuri. Hydrobiologia 25:330–340CrossRefGoogle Scholar
  79. Thomas J, Gonzalves EA (1965b) Thermal algae of Western India. II. Algae of the hot springs at Palli. Hydrobiologia 25:340–351CrossRefGoogle Scholar
  80. Thomas J, Gonzalves EA (1965c) Thermal algae of Western India. III. Algae of the hot springs at Sav. Hydrobiologia 26:21–28CrossRefGoogle Scholar
  81. Thomas J, Gonzalves EA (1965d) Thermal algae of Western India. IV. Algae of the hot springs at Aravali, Tooral and Rajewadi. Hydrobiolcgia 26:29–40CrossRefGoogle Scholar
  82. Thomas J, Gonzalves EA (1965e) Thermal algae of Western India, VI. Algae of the hot springs at unai, Lasundra and unapdeo. Hydrobiologia 26:55–65CrossRefGoogle Scholar
  83. Thussu JL (2002) Geothermal energy resources of India. Geol Surv India Spec Publ 69:210Google Scholar
  84. Tripathi C, Mahato NK, Rani P, Singh Y, Kamra K, Lal R (2016a) Draft genome sequence of Lampropedia cohaerens strain CT6T isolated from arsenic rich microbial mats of a Himalayan hot water spring. Stand Genom Sci 11(1):64.  https://doi.org/10.1186/s40793-016-0179-1 CrossRefGoogle Scholar
  85. Tripathi C, Mahato NK, Singh AK, Kamra K, Korpole S, Lal R (2016b) Lampropedia cohaerens sp. nov., a biofilm-forming bacterium isolated from microbial mats of a hot water spring, and emended description of the genus Lampropedia. Int J Syst Evol Microbiol 66:1156–1162CrossRefPubMedGoogle Scholar
  86. Tripathy S, Padhi SK, Sen R, Maji U, Samanta M, Mohanty S, Maiti NK (2016) Draft genome sequence of Brevibacillus borstelensis cifa_chp40, a thermophilic strain having biotechnological importance. J Genom 4:4–6CrossRefGoogle Scholar
  87. Verma A, Dhiman K, Gupta M, Shirkot P (2015) Bioprospecting of thermotolerant bacteria from Hot Water Springs of Himachal Pradesh for the production of Taq DNA polymerase. Proc Natl Acad Sci India Sect B Biol Sci 85:739–749CrossRefGoogle Scholar
  88. Yang J, Zhou E, Jiang H, Li WJ, Wu G, Huang L, Hedlund BP, Dong H (2015) Distribution and diversity of aerobic carbon monoxide-oxidizing bacteria in geothermal springs of China, the Philippines, and the United States. Geomicrobiol J 32:903–913CrossRefGoogle Scholar
  89. Zimik HV, Farooq SH, Prusty P (2017) Geochemical evaluation of thermal springs in Odisha, India. Environ Earth Sci 76(593).  https://doi.org/10.1007/s12665-017-6925-x

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Manik Prabhu Narsing Rao
    • 1
  • Lan Liu
    • 1
  • Jian-Yu Jiao
    • 1
  • Min Xiao
    • 1
  • Wen-Jun Li
    • 1
    Email author
  1. 1.State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations