Advertisement

Trichoderma from Extreme Environments: Physiology, Diversity, and Antagonistic Activity

  • Laith Khalil Tawfeeq Al-Ani
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 8)

Abstract

The fungus Trichoderma is spreading throughout different climate zones. Therefore, this enhances the chance to get some isolates having the ability to confront poor conditions. Several extreme conditions affect Trichoderma. In this chapter I focus on important parameters that have large effects on growth, bioactivity, and antagonism as biological control agents. On the basis of these effects, some parameters are appropriate for every strain of Trichoderma: main factors such as temperature, pH, nutrient substrate, and water potential, and minor factors such as light and humidity. The temperature parameter is the first main factor that is suggested here to be responsible for alteration in Trichoderma life phases and bioactivity. Trichoderma has shown a high tolerance for temperature (range 0–50 °C). Most Trichoderma spp. showed high efficacy at moderate temperatures. Trichoderma spp. can tolerate pH from 2.0 to 13, but more Trichoderma tend toward acidic media. Nutrient substrate, water potential, light, and humidity were effective factors related to one or two activities of Trichoderma. However, parameters are very important in determining the efficacy of Trichoderma for use in controlling plant pathogens. Therefore, we can consider four points to confront these weaknesses of some Trichoderma-derived biopesticides and biofertilizers to control plant pathogens.

Keywords

Trichoderma Extreme soils Diversity Biology Plant 

References

  1. Agosin E, Volpe D, MunÄoz G, San Martin R, Crawford A (1997) Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum. World J Microbiol Biotechnol 13:225–232.  https://doi.org/10.1023/A:1018502217083 CrossRefGoogle Scholar
  2. Al-Ani LKT (2017) Potential of utilizing biological and chemical agents in the control of Fusarium wilt of banana. PhD School of Biology Science, Universiti Sains Malaysia Pulau, Pinang, Malaysia, p 259Google Scholar
  3. Al-Ani LKT, Albaayit SFA (2018) Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). In: International Conference on Research in Education & Science, ICRES April 28 – May 1, Marmaris, Turkey, p 271Google Scholar
  4. Al-Ani LKT, Salleh B, Ghazali AHA (2013) Biocontrol of Fusarium wilt of banana by Trichoderma spp. 8th PPSKH colloquium Pust Pengajian Sains Kajihayat/School of Biological Sciences USM June 5–6Google Scholar
  5. Al-Hazmi AS, TariqJaveed M (2016) Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi J Biol Sci 23:288–292.  https://doi.org/10.1016/j.sjbs.2015.04.007 CrossRefPubMedGoogle Scholar
  6. Andreaus J, Azevedo H, Cavaco-Paulo A (1999) Effects of temperature on the cellulose binding ability of cellulase enzymes. J Mol Catal B Enzym 7:233–239.  https://doi.org/10.1016/S1381-1177(99)00032-6 CrossRefGoogle Scholar
  7. Antal Z, Manczinger L, Szakaacs G, Tengerdy RP, Ferenczy L (2000) Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains Trichoderma species. Mycol Res 104:545–549.  https://doi.org/10.1017/S0953756299001653 CrossRefGoogle Scholar
  8. Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69.  https://doi.org/10.1038/nrmicro1578 CrossRefPubMedGoogle Scholar
  9. Baig MMV (2005) Cellulolytic enzymes of Trichoderma lignorum produced on banana agro-waste: optimisation of culture medium and conditions. J Sci Ind Res 64:57–60. http://hdl.handle.net/123456789/4995
  10. Balestrini R, Chitarra W, Fotopoulos V, Ruocco M (2017) Potential role of beneficial soil microorganisms in plant tolerance to abiotic stress factors. In: Lukac M, Grenni P, Gamboni M (eds) Soil biological communities and ecosystem resilience (Sustainability in plant and crop protection). Springer, Cham, pp 191–207.  https://doi.org/10.1007/978-3-319-63336-7_12 CrossRefGoogle Scholar
  11. Berrocal-Tito G, Sametz-Baron L, Eichenberg K, Horwitz BA, Herrera-Estrella A (1999) Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J Biol Chem 274:14288–14294.  https://doi.org/10.1074/jbc.274.20.14288 CrossRefPubMedGoogle Scholar
  12. Błaszczyk L, Popiel D, Chełkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M (2011) Species diversity of Trichoderma in Poland. J Appl Genet 52:233–243.  https://doi.org/10.1007/s13353-011-0039-z CrossRefPubMedPubMedCentralGoogle Scholar
  13. Błaszczyk L, Strakowska J, Chełkowski J, Gąbka-Buszek A, Kaczmarek J (2016) Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization. J Appl Genet 57:397–407.  https://doi.org/10.1007/s13353-015-0326-1 CrossRefPubMedGoogle Scholar
  14. Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH (2012) Trichoderma: sensing the environment for survival and dispersal. Microbiology 158:3–16.  https://doi.org/10.1099/mic.0.052688-0 CrossRefPubMedGoogle Scholar
  15. Casas-Flores S, Rios-Momberg M, Bibbins M, Ponce-Noyola P, Herrera-Estrella A (2004) BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150:3561–3569.  https://doi.org/10.1099/mic.0.27346-0 CrossRefPubMedGoogle Scholar
  16. Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184 ISBN-13: 978-3540580058Google Scholar
  17. Da Silva LCA, Honorato TL, Cavalcante RS, Franco TT, Rodrigues S (2012) Effect of pH and temperature on enzyme activity of Chitosanase produced under solid stated fermentation by Trichoderma spp. Indian J Microbiol 52(1):60–65.  https://doi.org/10.1007/s12088-011-0196-0 CrossRefPubMedGoogle Scholar
  18. Danielson RM, Davey CB (1973) Non nutritional factors affecting the growth of Trichoderma in culture. Soil Biol Biochem 5:495–504.  https://doi.org/10.1016/0038-0717(73)90039-4 CrossRefGoogle Scholar
  19. Domingues MVPF, Moura KE, Salomão D, Elias LM, Patricio FRA (2016) Effect of temperature on mycelial growth of Trichoderma, Sclerotinia minor and S. sclerotiorum, as well as on mycoparasitism. Summa Phytopathol 42(3):222–227.  https://doi.org/10.1590/0100-5405/2146 CrossRefGoogle Scholar
  20. Druzhinina IS, Komoń-Zelazowska M, Atanasova L, Seidl V, Kubicek CP (2010) Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLoS One 5:e9191.  https://doi.org/10.1371/journal.pone.0009191 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eastburn DM, Butler EE (1988) Microhabitat characterization of Trichoderma harzianum in natural soil: evaluation of factors affecting distribution. Soil Biol Biochem 20:547–553.  https://doi.org/10.1016/0038-0717(88)90071-5 CrossRefGoogle Scholar
  22. Galun E, Gressel J (1966) Morphogenesis in Trichoderma: suppression of photoinduction by 5-fluorouracil. Science (New York) 151:696–698.  https://doi.org/10.1126/science.151.3711.696 CrossRefGoogle Scholar
  23. Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S (2011) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:1: 1–1: 8.  https://doi.org/10.4061/2011/810425 CrossRefGoogle Scholar
  24. Gervais P, Fasquel J-P, Molin P (1988) Water relations of fungal spore germination. Appl Microbiol Biotechnol 29(6):586–592.  https://doi.org/10.1007/BF00260989 CrossRefGoogle Scholar
  25. Ghildiyal G, Pandy A (2008) Isolation of cold tolerant antifungal strains of Trichoderma sp. from glacial sites of Indian Himalayan region. Res J Microbiol 3(8):559–564.  https://doi.org/10.3923/jm.2008.559.564 CrossRefGoogle Scholar
  26. Guoweia S, Man H, Shikai W, He C (2011) Effect of some factors on production of cellulase by Trichoderma reesei HY07. Procedia Environ Sci 8:357–361.  https://doi.org/10.1016/j.proenv.2011.10.056 CrossRefGoogle Scholar
  27. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56.  https://doi.org/10.1038/nrmicro797 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hjeljord LG, Tronsmo A (2003) Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology 93:1593–1598.  https://doi.org/10.1094/PHYTO.2003.93.12.1593 CrossRefPubMedGoogle Scholar
  29. Hjeljord LG, Stensvand A, Tronsmo A (2000) Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biol Control 19:149–160.  https://doi.org/10.1006/bcon.2000.0859 CrossRefGoogle Scholar
  30. Inam-Ul-Haq M, Javed N, Ahsan Khan M, Jaskani MJ, Khan MM, Khan HU, Irshad G, Gowen SR (2009) Role of temperature, moisture and Trichoderma species on the survival of Fusarium oxysporum ciceri in the rainfed areas of Pakistan. Pak J Bot 41(4):1965–1974Google Scholar
  31. Innocenti G, Roberti R, Piattoni F (2015) Biocontrol ability of Trichoderma harzianum strain T22 against fusarium wilt disease on water-stressed lettuce plants. BioControl 60(4):573–581.  https://doi.org/10.1007/s10526-015-9662-7 CrossRefGoogle Scholar
  32. Isil S, Nilufer A (2005) Investigation of factors affecting xylanase activity from Trichoderma harzianum 1073 D3. Braz Arch Biol Technol 48(2):187–193.  https://doi.org/10.1590/S1516-89132005000200004 CrossRefGoogle Scholar
  33. Jackson AM, Whipps JM, Lynch JM (1991) Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential. World J Microbiol Biotechnol 7(4):494–501.  https://doi.org/10.1007/BF00303376 CrossRefPubMedGoogle Scholar
  34. Jackson MA, Mascarin GM, Kobori NN (2017) Trichoderma microsclerotia and methods of making. US patent US9642372B2Google Scholar
  35. Jang S, Jang Y, Kim C-W, Lee H, Hong J-H, Heo YM, Lee YM, Lee DW, Lee HB, Kim J-J (2017) Five new records of soil-derived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. Mycobiology 45(1):1–8.  https://doi.org/10.5941/MYCO.2017.45.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jayaswal RK, Singh R, Lee YS (2003) Influence of physiological and environmental factors on growth and sporulation of an antagonistic strain of Trichoderma viride RSR 7. Mycobiology 31(1):36–41.  https://doi.org/10.4489/MYCO.2003.31.1.036 CrossRefGoogle Scholar
  37. Jones EE, Bienkowski DA, Stewart A (2016) The importance of water potential range tolerance as a limiting factor on Trichoderma spp. biocontrol of Sclerotinia sclerotiorum. Ann Appl Biol 168:41–51.  https://doi.org/10.1111/aab.12240 CrossRefGoogle Scholar
  38. Kamo M, Tojo M, Yamazaki Y, Itabashi T, Takeda H, Wakana D, Hosoe T (2016) Isolation of growth inhibitors of the snow rot pathogen Pythium iwayamai from an arctic strain of Trichoderma polysporum. J Antibiot 69:451–455.  https://doi.org/10.1038/ja.2015.130 CrossRefPubMedGoogle Scholar
  39. Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol Biotechnol 47:37–42Google Scholar
  40. Kredics L, Manczinger L, Antal Z, Pénzes Z, Szekeres A, Kevei F, Nagy E (2004) In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. J Appl Microbiol 96:491–498.  https://doi.org/10.1111/j.1365-2672.2004.02167.x CrossRefPubMedGoogle Scholar
  41. Kubicek CP, Bissett J, Druzhinina IS, Kullnig-Gradinger CM, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on south east Asian isolates. Fungal Genet Biol 38:310–319.  https://doi.org/10.1016/S1087-1845(02)00583-2 CrossRefPubMedGoogle Scholar
  42. Lupo S, Dupont J, Bettucci L (2002) Ecophysiology and saprophytic ability of Trichoderma spp. Cryptogam Mycol 23:71–80Google Scholar
  43. Magan N (1988) Effects of water potential and temperature on spore germination and germ-tube growth in vitro and on straw leaf sheaths. Trans Br Mycol Soc 90(1):97–107.  https://doi.org/10.1016/S0007-1536(88)80185-2 CrossRefGoogle Scholar
  44. Malathi P, Doraisamy S (2003) Effect of temperature on growth and antagonistic activity of Trichoderma spp. against Macrophomina phaseolina. J Biol Control 17(2):153–159.  https://doi.org/10.18311/jbc/2003/3973 CrossRefGoogle Scholar
  45. Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221.  https://doi.org/10.1094/PHYTO-03-10-0091 CrossRefPubMedGoogle Scholar
  46. Mastouri F, Bjorkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant-Microbe Interact 25:1264–1271.  https://doi.org/10.1094/MPMI-09-11-0240 CrossRefPubMedGoogle Scholar
  47. Mishra DS, Prajapati CR, Gupta AK, Sharma SD (2012) Relative bio-efficacy and shelf-life of mycelial fragments, conidia and chlamydospores of Trichoderma harzianum. Vegetos Int J Plant Res 25(1):225–232Google Scholar
  48. Montoya-Gonzalez AH, Quijano-Vicente G, Morales-Maza A, Ortiz-Uribe N, Hernandez-Martinez R (2016) Isolation of Trichoderma Spp. from desert soil, biocontrol potential evaluation and liquid culture production of conidia using agricultural fertilizers. J Fertil Pestic 7:163.  https://doi.org/10.4172/jbfbp.1000163 CrossRefGoogle Scholar
  49. Mukherjee PK, Raghu K (1997) Effect of temperature on antagonistic and biocontrol potential of shape Trichoderma sp. on Sclerotium rolfsii. Mycopathologia 139(3):151–155.  https://doi.org/10.1023/A:1006868009184 CrossRefPubMedGoogle Scholar
  50. Mulaw TB, Kubicek CP, Druzhinina IS (2010) The rhizosphere of Coffea Arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Diversity 2:527–549.  https://doi.org/10.3390/d2040527 CrossRefGoogle Scholar
  51. Muniappan V, Muthukumar T (2014) Influence of crop species and edaphic factors on the distribution and abundance of Trichoderma in Alfisol soils of southern India. Acta Bot Croat 73(1):37–50CrossRefGoogle Scholar
  52. Naseby DC, Pascual JA, Lynch JM (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J Appl Microbiol 88:161–169.  https://doi.org/10.1046/j.1365-2672.2000.00939.x CrossRefPubMedGoogle Scholar
  53. Petrisor C, Paica A, Constantinescu F (2016) Influence of abiotic factors on in vitro growth of Trichoderma strains. Proc Romanian Acad Ser B 18(1):11–14Google Scholar
  54. Qiu Z, Wu X, Zhang J, Huang C (2017) High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia. PLoS One 12(10):e0187055.  https://doi.org/10.1371/journal.pone.0187055 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Raza W, Faheem M, Yousaf S, Rajer FU, Yamin M (2013) Volatile and non-volatile antifungal compounds produced by Trichoderma harzianum SQR-T037 suppressed the growth of Fusarium oxysporum f sp. niveum. Sci Lett 1:21–24Google Scholar
  56. Regragui A, Lahlou H (2005) Effect of salinity on in vitro Trichoderma harzianum antagonism against Verticillium dahliae. Pak J Biol Sci 8(6):872–876.  https://doi.org/10.1080/03235408.2017.1357360 CrossRefGoogle Scholar
  57. Ren J, Xue C, Tian L, Xu M, Chen J, Deng Z, Proksch P, Lin W (2009) Asperelines A–F, peptaibols from the marine-derived fungus Trichoderma asperellum. J Nat Prod 72:1036–1044.  https://doi.org/10.1021/np900190w CrossRefPubMedGoogle Scholar
  58. Said SD (2007) Spore production of biocontrol agent Trichoderma harzianum: effect of C/N ratio and glucose concentration. Jurnal Rekayasa Kimia dan Lingkungan 6(1):35–40Google Scholar
  59. Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroers HJ, Druzhinina IS (2006) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133.  https://doi.org/10.3114/sim.2006.56.03 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sanogo S, Pomella A, Hebbar PK, Bailey B, Costa JCB, Samuels GJ, Lumsden RD (2002) Production and germination of conidia of Trichoderma stromaticum, a mycoparasite of Crinipellis perniciosa on cacao. Phytopathology 92:1032–1037.  https://doi.org/10.1094/PHYTO.2002.92.10.1032 CrossRefPubMedGoogle Scholar
  61. Sharma KK (1992) Effects of temperature and ethanol on maturation and germination of Trichoderma reesei. Master thesis, Lehigh University USA, p 104Google Scholar
  62. Sharma PK, Gothalwal R, Tiwari RKS (2013) Isolation of cold tolerant antifungal strains of Trichoderma sp. from northern hilly zones of Chhattisgarh. Int J Plant Prot 6(2):236–240Google Scholar
  63. Silas K, Bitrus HK, Wadinda JM, Zubairu A (2017) Effects of temperature and pH on Trichoderma reseei cellulase activity in glucose production from water melon peel. Int J Sci Res Pub 7(3):253–259Google Scholar
  64. Simon A, Sivasithamparam K, Macnish GC (1988) Effect of application of soil nitrogenous fertilizers and lime on biological suppression of Gaeumannomyces graminis var. tritici. Trans Br Mycol Soc 91:287–294.  https://doi.org/10.1016/S0007-1536(88)80217-1 CrossRefGoogle Scholar
  65. Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, Kumar V (2014) Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol Mycol 3(1):127.  https://doi.org/10.4172/2161-0517.1000127 CrossRefGoogle Scholar
  66. Suh DH, Becker TC, Sands JA, Montenecourt BS (1988) Effects of temperature on xylanase secretion by Trichoderma reesei. Biotechnol Bioeng 32:821–825.  https://doi.org/10.1002/bit.260320614 CrossRefPubMedGoogle Scholar
  67. Tao S, Beihui L, Deming L, Zuohu L (1997) Effect of elevated temperature on Trichoderma viride SL-1 in solid state fermentations. Biotechnol Lett 19(2):171–174.  https://doi.org/10.1023/A:1018372616637 CrossRefGoogle Scholar
  68. Torres-De la Cruz M, Ortiz-García CF, Bautista-Muñoz C, Ramírez-Pool JA, Ávalos-Contreras N, Cappello-García S, De la Cruz-Pérez A (2015) Diversidad de Trichoderma en el agroecosistema cacao del estado de Tabasco, México. Revista Mexicana de Biodiversidad 86(4):947–961.  https://doi.org/10.1016/j.rmb.2015.07.012 CrossRefGoogle Scholar
  69. Tronsmo A, Dennis C (1978) Effect of temperature on antagonistic properties of Trichoderma species. Trans Br Mycol Soc 71(3):469–474.  https://doi.org/10.1016/S0007-1536(78)80075-8 CrossRefGoogle Scholar
  70. Wakelin SA, Sivasithamparam K, Cole ALJ, Skipp RA (1999) Saprophytic growth in soil of a strain of Trichoderma koningii. N Z J Agric Res 42:337–345.  https://doi.org/10.1080/00288233.1999.9513383 CrossRefGoogle Scholar
  71. Wibowo A (1999) The effect of environmental factors on conidial germination, sporulation and growth of Trichoderma harzianum in vitro. Jurnal Perlindungan Tanaman Indonesia 5(2):108–113.  https://doi.org/10.22146/jpti.12759 CrossRefGoogle Scholar
  72. Wuczkowski M, Druzhinina I, Gherbawy Y, Klug B, Prillinger HJ, Kubicek CP (2003) Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol Res 158(2):125–133.  https://doi.org/10.1078/0944-5013-00193 CrossRefPubMedGoogle Scholar
  73. Yamazaki Y, Tojo M, Hoshino T, Kida K, Sakamoto T, Ihara H, Yumoto I, Tronsmo AM, Kanda H (2011) Characterization of Trichoderma polysporum from Spitsbergen, Svalbard archipelago, Norway, with species identity, pathogenicity to moss, and polygalacturonase activity. Fungal Ecol 4:15–21.  https://doi.org/10.1016/j.funeco.2010.06.002 CrossRefGoogle Scholar
  74. Zehra A, Dubey MK, Meena M, Upadhyay RS (2017) Effect of different environmental conditions on growth and sporulation of some Trichoderma species. J Environ Biol 38:197–203.  https://doi.org/10.22438/jeb/38/2/MS-251 CrossRefGoogle Scholar
  75. Zhang CL, Druzhinina IS, Kubicek CP, Xu T (2005) Biodiversity of Trichoderma in China: evidence for a north to south difference of species distribution in East Asia. FEMS Microbiol Lett 251:251–257.  https://doi.org/10.1016/j.femsle.2005.08.034 CrossRefPubMedGoogle Scholar
  76. Zhang F, Ge H, Zhang F, Guo N, Wang Y, Chen L, Ji X, Li C (2016) Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol Biochem 100:64–74.  https://doi.org/10.1016/j.plaphy.2015.12.017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Laith Khalil Tawfeeq Al-Ani
    • 1
    • 2
  1. 1.Department of Plant Protection, College of AgricultureUniversity of BaghdadBaghdadIraq
  2. 2.School of Biology ScienceUniversiti Sains MalaysiaMindenMalaysia

Personalised recommendations