Advertisement

RED Applied to Desalination

  • Daejoong KimEmail author
  • Kilsung Kwon
  • Deok Han Kim
  • Longnan Li
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

RED performance can be improved by using highly concentrated brines in the desalination process. Desalination brines have high chemical potentials because of ions that remain after water is eliminated from seawater. To date, there are only a few studies on using brines as the concentrated solution in RED systems. This chapter shows the power enhancement of RED using brines discharged from two different membrane-based desalination processes: (1) reverse osmosis (RO), the most popular method in the desalination market, and (2) forward osmosis (FO), a novel concept without energy-intensive high-pressure processes. The effects of desalination brines on RED performance were evaluated both experimentally and numerically.

References

  1. R. Buchner, G.T. Hefter, P.M. May, Dielectric relaxation of aqueous NaCl solutions. J. Phys. Chem. A 103, 1–9 (1998)CrossRefGoogle Scholar
  2. V. Geraldes, N.E. Pereira, M.N. de Pinho, Simulation and optimization of medium-sized seawater reverse osmosis processes with spiral-wound modules. J. Ind. Eng. Chem. 44, 1897–1905 (2005)CrossRefGoogle Scholar
  3. E. Güler, R. Elizen, D.A. Vermaas, M. Saakes, K. Nijmeijer, Performance-determining membrane properties in reverse electrodialysis. J. Membr. Sci. 446, 266–276 (2013)CrossRefGoogle Scholar
  4. M. Tedesco, A. Cipollina, A. Tamburini, W. van Baak, G. Micale, Modelling the reverse electrodialysis process with seawater and concentrated brines. Desalination Water Treat. 49, 404–424 (2012)CrossRefGoogle Scholar
  5. M. Tedesco, A. Cipollina, A. Tamburini, D.L. Bogle, G. Micale, A simulation tool for analysis and design of reverse electrodialysis using concentrated brines. Chem. Eng. Res. Des. 93, 441–456 (2015)CrossRefGoogle Scholar
  6. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: a validated process model for design and optimization. Chem. Eng. J. 166, 256–268 (2011)CrossRefGoogle Scholar
  7. D.A. Vermaas, M. Saakes, K. Nijimeijer, Doubled power density from salinity gradient at reduced intermembrane distance. Environ. Sci. Technol. 45, 7089–7095 (2011a)CrossRefGoogle Scholar
  8. D.A. Vermaas, M. Saakes, K. Nijimeijer, Power generation profiled membranes in reverse electrodialysis. J. Membr. Sci. 385–386, 234–242 (2011b)CrossRefGoogle Scholar
  9. D.A. Vermaas, E. Güler, M. Saakes, K. Nijmeijer, Theoretical power density from salinity gradients using reverse electrodialysis. Energy Procedia 20, 170–184 (2012)CrossRefGoogle Scholar
  10. D. Vermaas, M. Saakes, K. Nijmeijer, Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis. J. Membr. Sci. 453, 312–319 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Daejoong Kim
    • 1
    Email author
  • Kilsung Kwon
    • 2
  • Deok Han Kim
    • 1
  • Longnan Li
    • 1
  1. 1.Department of Mechanical EngineeringSogang UniversitySeoulKorea (Republic of)
  2. 2.Korea Atomic Energy Research InstituteSeoulKorea (Republic of)

Personalised recommendations